
AIENTAfION PAGEAD-A268 375

____ FINAL/OI SEP 89 TO 31 OCT 92

DESIGN & DIAGNOSIS PROBLEM SOLVING WITH
MULTIFUNCTIONAL TECHNICAL KNOWLEDGE BASES (U)

16.AUTHOR(S) I

6919/00/DARPA
Professor B. Chandrasekaran F49620-89-C-0110

!7. PERFORMING S-T.•'d ". - 8. PERFORMING ORGANIZATON

Ohio State University
Dept of Computer & Information Science
1960 Kenny Road 7.1if.1•,"K O ,5s'-

Columbus OH 43210 A'

9. SPONSORiNG ,CNiRiNG AGL•.Y ,...l ,., ,..AES5S) - 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

AFOSR/NM
110 DUNCAN AVE, SUTE B115 F49620-89-C-0110
BOLLING AFB DC 20332-0001 EL CT

AUG 16 19UP R

12a. DISTRIBUTION AVAILABILITY STATEMENT 112b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED UL

13. ABSTRACT (Maximum 200 words)

The research goal for the project reported here has been to develop enabling
technology for building large knowledge bases designed to support automated and
semi-automated problem solving for scientific and engineering domains. The work on
analyzing problem-solving tasks, much of it preceding the project reported here,
has led to the view that there are distinct, analyzable "Generic Tasks" (GT's) that
occur naturally in problem-solving activity. The "Functional Representation
Language" (FR), was originally introduced by Sembugamoorthy and Chandrasekaran
(1986) as a device representation from which diagnosis-specific knowledge could be
derived by a process of knowledge compilation. It was subsequently applied to
upport other tasks besides diagnosis (most notably forms of qualitative

simu-lation), and used to represent a wide variety of device types-

93 m 408,•.O9 (

_ _ _ _ _ _ _ II4NI lOl~-'
i o-f0

16. PRICE CODE

17, SECURITY CLASSIFICATION 18.SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT ~
OF REPORT OF THIS PAGE f OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR(SANE AS REPORT)

IS 54-0-28-5500..- S~ardard Formn296 Mev QY
298.102 4

•A i

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE o1 No, 070r 188
th sand C=.0M .9Nstu o.s 0704-0188n

S'Publ reporting burden for this collection of information is estimated t I h p . n• dg •i • " re in c tn t
gatlereg an ma ntann h dat needed, nd c pe ing bundreving toe colecio~n o infortm ation , Diend c toratent burdIfriqitio n atO ill anefferaspeton is 4q•way. Suite 1204. Arlington. V 222024302. and to the Off" of Man"gemein nd Budget iperwoal rAducn Pofect(070"44M. Washngton. W3.

,.•GIENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPIE AND DATES COVERED/

June 1993 Final (Oct. 1989 - De . 1992)

4. TMITAL SUBTITLE S. FUND UMBERS

Desig~iand Diagnosis Problem Solving with
Multifu tional Technical Knowledge Bases

.AUTHOIS) ur \ DF4962rde-r-No.61
/OSR Contract No.

B. ChandrasekaXan and John Josephson

7.PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 6. PERFORMING ORGANIZATION\ / REPORT NUMBER
The Ohio State Univers y Research Foundation
1960 Kenny Rd. k / RF 767812/722778
Columbus, Ohio 43210 •/

9. SP•OSORING/ MONITORING AGENCY NAME(S ND ADORES ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Air Force Office of Scientifi Research
Building 410 / F49620-89-C-0110
Bolling Air Force Base, D.C. 203 -6448

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODEII
13. ABSTRACT (Maximum 200words)

//

/

14. SUIBECT TERMS 15. NUMBER OF PA ES
224

I CODE

17. SECURITY Is . SECUIT CLASSWATION I. SE| 0I.ASSWATW5 2. LIMITATION A

OF RIPORT OF ?"IS PAGE OF ASTIUACT

NIN0 75404014-2W500 Stomdad Form M3 (R"v 43
PI W W#lA SM MIS

t
i

i
I b)HIO Design and Diagnosis Problem

S SI•I Solving with Multifunctional
UNIVERSITY Technical Knowledge Bases

?i B. Chandrasekaran and John Josephson
Laboratory for Artificial Intelligence Research

r Department of Computer and Information Scien &ccesion For
NTIS CRA&I
DTIC TAB o-
U*;anliounced -
Justification

By..............

Dit: Availabili Codes

Avail dnc forSDist Special

Department of Defense
Advanced Research Projects Agency A- i

DARPA Order No. 6919 DTIC QG0UA TNBIPME•,D S

Monitored by AFOSR under Contract No. F49620-89-C-01 10
Final Report
For the Period: October 1989 - December 1992
RF Project No. 767812/722778

I

1 June 1993

1I4
[7

I

I Table of Contents

I
I Report Overview .. 2

Task Structure Analysis ... 2
Representing and Reasoning About Devices and Causal Processes 8
Visual Reasoning ... 14

Reconfigurable Devices and Other Applications ... 16
References ... 20
Papers and Publications Supported by the Project 24
Appendices:

Design Problem Solving: A Task Analysis 30
Task-Structure Analysis for Knowledge Modeling 52
Form and Content Issues in the Abductive Framework

for Recognition ... 66
Explanation Using Task Structure and Domain Function Models 77
Functional Representation as Design Rationale 105
Explanation in Knowledge Systems: The Role of Explicit

Representation of Design Knowledge ... 114
Design Verification Through Function- and Behavior-Oriented

Representations: Bridging the Gap Between Function
Sand Behavior .. 117

CFRL: A Language for Specifying the Causal Functionality of
Engineered Devices ... 137{1 How Things are Intended to Work: Capturing Functional
Knowledge in Device Design .. 145

QP is More Than SPQR and Dynamical Systems Theory:
Response to Sacks and Doyle .. 152

Architecture of Intelligence: The Problems and Current
Approaches to Solutions ... 160

Perceptual Representation and Reasoning ... 175
Reasoning Visually About Spatial Interactions 185
Combining Functional Representation and Structure-Based

Models for Smarter Simulation .. 191
Representing Function for Reasoning About Software-Hardware

Reconfiguration .. 206
Multilevel Causal-Process Modeling: Bridging the Plan,

Execution, and Device-Implementation Gaps 214

I

I

I
Report Overview

The research goal for the project reported here has been to developj enabling technology for building large knowledge bases designed to
support automated and semi-automated problem solving for scientific and
engineering domains.

This report has the following sections:I
* Task Structure Analysis

* Representing and Reasoning about Devices and Causal Processes

* Visual Reasoning

* Reconfigurable Devices and Other Applications

* References

* Papers and Publications Supported by this Project

- * Appendices: Included Papers

I
Task Structure Analysis

Our work on analyzing problem-solving tasks, much of it preceding the
project reported here, has led to the view that there are distinct,
analyzable "Generic Tasks" (GT's) that occur naturally in problem-solving
activity, and that largely determine:
* the forms of knowledge that will be most useful to store in a knowledge

base,

1 the ooblem-soving strategieS that will be effective for using that
knowledge to solve problems, and

a the knowledge o=anizitzan that will make knowledge retrieval
efficient.

f
[2I .I.... . ..

1It

Some other determiners of forms and organizations of knowledge, and of
effective reasoning strategies, are: the nature of the available
computational resources for problem solving (parallel or serial, size of 1
short- and long-term memory, processing speed, etc.); the forms in which
knowledge is most readily available; and the forms of knowledge that most
readily support human interaction, including explanation of reasoning
processes and justification of conclusions.

We have distinguished and studied seven "elementary" GTs, with their
associated knowledge forms and reasoning strategies:

" Hierarchical Classification- Classify an object, event, or situation
with respect to a taxonomic hierarchy. A useful control strategy is
"establish-refine," i.e., top-down, prune-or-pursue navigation of the
hierarchy of classification categories, where each category is associated
with knowledge to support Hypothesis Matching.

"* Hypothesis Matching- Recognize whether a concept applies to a given
situation, producing a confidence symbol. Knowledge is usefully
organized hierarchically, along lines of abstraction of features. That is, a |
"feature" may itself be recognized based upon a further set of features.
Control may be organized for either hypothesis-driven or event-driven
invocation. This generic task has also been called "structured matching,"
"routine recognition," and "concept matching for relevance."

"• Routine Design- Construct a design or plan according to specifications,
where a family of design plans is known in advance, but how plans and
sub-plans fit together must be decided at run time. Useful control
strategy: plan selection and refinement. Useful forms of knowledge:
designs, design plans (plans for constructing designs), plan steps, I
subplans, constraints to check, and backtracking plans. [3,4]

"* Knowledge-Directed Data Retrieval- Retrieve data "Intelligently"
using indirect inference if necessary (either for automated problem I
solving or direct human use). Data-related concepts are active entities
that reside in networks of semantic relations. At a basic level the
control mechanism is indirect inference (attached inference procedures)
whereby the active concept that catches a question (because it
specializes In a concept that occurs In the question) knows what to do to
infer an answer. Specialized forms of attached inferenc .Ake advantage
of the semantic relations between the concepts. A part .'rly
important use of knowledge-directed data retrieval is for data-
abstraction," the transformation of raw data to forms more useful for
problem solving, e.g., inferring normality/abnormality and trends. [33]

3I

I * Abductive Hypothesis Assembly- Find the best explanation for
some body of data (constructing a composite hypothesis if necessary)
and estimate confidence. Useful forms of knowledge include: knowledge
for finding potential explainers (forms include: cues, hierarchical
classification knowledge, causal knowledge), hypothesis matchingf knowledge for evaluation and screening of potential explainers,
knowledge for determining explanatory cove-rage (e.g. causal
knowledge), and interaction knowledge for hypothesis fragments (e.g.,
incompatibility). Useful control strategy specialized means-ends with
the goals of explaining as much as possible, maintaining consistency,
and maximizing confidence. [27, 41, 25, 26, 18]

* Prediction by State Abstraction- Predict the effects on a system,
given changes to lower-level subsystems. Control usefully proceeds
bottom-up through the hierarchy of concepts associated with
subsystems.

* Goal Abandonment- Decide which goal to abandon when it is judged
that not all active goals can be achieved. Useful forms of knowledge:
precompiled comparative priorities, goal-subgoal hierarchy. Useful
control strategy: from the points in the goal-subgoal hierarchy
representing the active goals in conflict, inherit priority knowledge from
active supergoals.

I Elementary GTs form building blocks for more complex reasoning tasks. A
major goal of this project was to analyze the task structures of design,
diagnosis, and redesign (finding inadequacies in designs, explaining
their emergence, and proposing fixes) [6, 7, 11]. These were selected for
special attention because of the theoretical challenges they present, and

• fbecause systems for assisting with these tasks have an enormous potential
for useful applications. Analyzing the structure of problem-solving tasks
involves determining appropriate methods for accomplishing them under(various conditions, analyzing the subtasks spawned by the methods, and
determining the characteristics of the various methods, including their
knowledge requirements.

Analyzing design, redesign, and diagnosis problem-solving tasks has led us
to a more general view of task decomposition and the generation of
subtasks [9]. In particular we have found It to be very useful to distinguish
method selection as an important distinctive activity which arises after ar problem solving task or subtask has been generated. At that time therelevant available information can be used in selecting the most promising
method to be used in carrying out the task. The method selection may

I4
l ~4

'I!
,.I

itself spawn additional needs for knowledge and problem solutions. So the
recursive decompositic af an overall problem Into task and subtask is not
always fixed, but is a product of the interaction of how the problem
instance, the knowledge available to the system when the task arises, and
perhaps some history of efforts at solving the problem.

A task structure analysis is a functional decomposition of an information
processing task. Such an analysis identifies domain-specific and domain
independent aspects of a task and methods for Its accomplishment. The
task can be feasibly accomplished if a decomposition can be found such
that each subtask is feasible, and can be combined with the other subtasks
by a feasible method. A task can have one or more methods associated
with accomplishing it. Each method is specified in terms of how it uses
knowledge and inference to achieve its goals, and in terms of what
subtasks (subgoals) it sets up and requires to be achieved before it can
succeed. Alternative methods for accomplishing a task may make use of a
common subtask. This kind of decomposition can be done recursively until
methods which achieve subtasks, but which do not set up additional
subtasks of their own, are reached.

We investigated how elementary generic tasks can be composed and
integrated, trying to combine the advantages of task-specific architectures
(computational efficiency, modularity, knowledge-acquisition, knowledge-
base debugging, knowledge-maintenance) with the flexibility and
robustness inherent in generalized goal-seeking control of problem-
solving. Various approaches to integrating basic generic reasoning tasks
have been explored at LAIR in recent years. A discussion of the issues
involved is given in B. Chandrasekaran, "Design problem solving: A task
analysis" which is included as an Appendix with this report. Additional
discussion is available in [11, 19, 22, 23, 24, 40, 42].

Task Analysis of Design

The most common top-level family of methods for design can be
characterized as Propose-Critique-Modify (PCM) methods. These
methods have the subtasks of proposal of partial or complete design
solutions, verification of proposed solutions, critiquing the proposals by
identifying causes of verification failure, if any, and modificatdon of
proposals to better satisfy design goals. These subtasks can be combined
in fairly complex ways, but the following is one straightforward way in

-I

whih PM etodma ogaizean cmbneth sbrs S

I

1 * Step 1. Given design goal, propose solution. If no proposal, exit with
failure.

I * Step 2. Verify proposal. If verified, exit with success.

* Step 3. If unsuccessful, critique proposal to identify sources of failure.J If no useful criticism available, exit with failure.

• Step 4. Modify proposal and return to 2.

While all PCM methods will need to have some way to achieve the iteration
in Step 4 above, there can be numerous variants on the way the methods
in this class work. For example, a solution may be proposed only for a part

* of the design problem, a part deemed to be crucial. This solution may then
be critiqued and modified. This partial solution may generate additionalconstraints, leading to further design commitments. Thus subtasks can bescheduled in a fairly complex way, with subgoals from different methods

alternating.

In "Design problem solving: A task analysis," which is included in the
Appendix to this report, a detailed discussion is provided of the methods

I ~ that are available for each of the major subtasks of design problem solving,
along with an analysis of the knowledge requirements for each of the
methods and control strategies. The This paper also discusses the
implications of this analysis for the construction of design knowledge
bases.

Task Analysis of Abduction

SThe concept of abduction has been used to frame the problem of diagnosis,
scientific theory formation, natural language understanding, and is a more
general framework than classification for describing visual recognition.I Abduction or inference to the best explanation is distinctive kind of
inference that goes from data describing something to an explanatory
hypothesis that best explains or accounts for the data. Thus abduction is a
kind of theory-forming or interpretive inference. Abductive inferences
have this form, approximately:

D is a collection of data (facts, observations, givens).
H (hypothesis) explains D (would if true, explain D).
No other hypothesis is able to explain D as well as H does.

I Therefore, H is probably true.

I

.4 , .,*, .--....___.- --

1

The judgment of likelihood in the conclusion depends on:

* How decisively H surpasses the alternatives.

* How good H is by itself, independently of considering the
alternatives.

* How much confidence there is that all plausible explanations have
been considered (how thorough was the search for alternative
explanations).

We can analyze the information-processing task of abduction to have two
main subtasks:

"* subtask 1) generating elementary hypotheses,

"* subtask 2) synthesizing composite explanations.

The subtask, generating elementary hypotheses, has two sub-subtasks:

* sub-subtask 1.1) evoking

* sub-subtask 1.2) instantiating elementary hypotheses
The sub-subtask 1.2., instantiate elementary hypothesis, has two sub-sub-
subtasks:

* sub-sub-subtask 1.2.1) scoring the elementary hypotheses

* sub-sub-subtask 1.2.2) determining explanatory coverage.

This decomposition is very general. A typical abductive conclusion is a

composite, and somehow, explicitly or implicitly, there must be some
method of choosing which elementary hypothesis to consider, some way of j
making them specific to the case, and some way of accepting and
combining.

A rich and comprehensive book on abduction that describes research
progress made at LAIR over several years has been completed, and will
soon be published: Abductive Inference: Computation, Philosophy,Technology, Ed. J. and S. Josephson, Cambridge U. Pr. (forthcoming).

Task-Structure Analysis and the Construction of Technical
Knowledge Bases 31
In "Task-Structure Analysis for Knowledge Modeling," which is included in
the Appendix, we discuss in detail how the task structure provides a road
map for knowledge modeling and hence for knowledge representation.
The generic methods in the task structure require specific types of

7

1

knowledge, that can be supported by task- and method-specific high-level
languages.

Prediction

We have devoted much effort to identifying knowledge useful for
predictiou, because prediction is one of the most pervasive subtasks
generated by processes of design checking and diagnostic hypothesis
evaluation. We have been concerned with common-sense simulation of
the world, and its integration with more technical and mathematical
simulation methods, as would be found in an engineer's problem solving.
A treatment of some of the foundational issues is given in: B.
Chandrasekaran, "QP is More Than SPQO. and Dynamical Systems Theory:
Response to Sacks and Doyle," which appeared in Computational
Intelligence, and is included in the Appendix with this report.

Representing and Reasoning About Devices and Causal
Processes

The "Functional Representation Language" (FR), was originally
introduced by Sembugamoorthy and Chandrasekaran (1986) as a device
representation from which diagnosis-specific knowledge could be derived
by a process of knowledge compilation. It was subsequently applied to
support other tasks besides diagnosis (most notably forms of qualitative
simulation), and used to represent a wide variety of device types.

Humans understand how the functions of a device result from causal
processes in which the components and subsystems of the device play
various roles. We have sought to imitate human abilities to reason
causally by pursuing "machine understanding of how things work."
Making distinctions between device structures, functions, and the causal
processes that support functions, is at the heart of the FR, consequently we
have used FR as a representational point of departure for these
investigations. The main goals have been to devise structures for
knowledge organization supporting automatic and manual navigation of
multiple levels of functional and causal detail, for a wide range of types of
devices and causal processes; and to determine the types of knowledge
that are needed to support the problem-solving abilities that normally, in
humans, result from understanding how a device works.

I8

I

FR represents devices (abstract or physical), components, functions, and
causal processes - and coherently ties these representations together by
connecting device functionality to the causal processes by which functions
are achieved. Since its introduction by Sembugamoorthy and
Chandrasekaran, FR has been developed and applied by Chandrasekaran,
Sticklen, Keuneke, Josephson, Goel, Allemang, Weintraub, Punch, DeJongh,
Darden, Moberg, Iwasaki, and others. A very diverse set of devices has
been represented in FR, including: electro-mechanical devices [43] [45],
biological processes [15] [50] [40], non-AI computer programs [2],
knowledge-based systems [51], manufacturing fabrication processes [48],
landscape-level ecological systems [49], logistic plans [12], and parts of
chemical-processing plants [30] [17]. Inference procedures have been
developed to use these representations for case-based design and redesign
[17], automatic compilation of diagnostic knowledge [43] [50], various I
subtasks of diagnosis [40] [50] [1], program debugging [2], design criticism
and verification [17] [20], prediction [39], automatic software- hardware
reconfiguration [32], explanation [12] [30], and control of simulation [45] 1
[31].

FR is complementary to the more common "bottom-up" device
representations in which the behavioral characteristics of each component
or process in isolation is represented, and the behavior of the whole is
inferred, given information about how components or processes are
combined. FR differs in taking a more "top-down" view in which device
functions are explicitly represented, along with the roles that components t
and processes play in achieving those functions. FR is especially
appropriate for representing a designer's intent, but is also suitable for
representing unintended functions and behaviors. During this project we
made progress in combining the strengths of FR and component-centered
representations. Korda, Josephson, and Moberg [31, 32] demonstrated the
use of an FR-based representation to direct simulation processes which are
based on a VHDL-like representation. Iwasaki and Chandrasekaran [20]
(included in the Appendix) demonstrated a way to do design verification, 1
in a device-modeling environment called DME [21], by using FR in
conjunction with qualitative simulation.

During this project we enhanced the representations for device functions,
device structure, and causal processes; and devised and investigated
reasoning strategies able to use these representations to accomplish
various problem-solving subtasks supportive of design, diagnosis, and
redesign.

FR recognizes the following major datatypJ (classes and subclasses):

9 -

DEVICES - Components of devices are devices in their own right. A device
may have associated PORTS.

A device will usually have a description of its structure - given as a set of
components, their associated ports, and a set of CONNECTIONS between
ports. Connections allow the passage of SUBSTANCES, which may be
material (e.g., water), or abstract (e.g., heat or information). Ports and
connections come in types according to the types of the substances they
will pass. Device structure may also have other kinds of description (e.g.,
spatial, not just connection topology), but this aspect has not been very
much explored in the context of FR. In principle a device may have
separate descriptions depending on what perspective is taken; for.example
a wire may be viewed as a perfect conductor for some purposes, to have a
constant but low resistance for other purposes, or to have a resistance
which varies with temperature for others. While we recognized the need
for multiple perspectives, we will probably not incorporate it into our
representations for some time, pending a better theory of when
perspective switching is appropriate.

STATES - A "state" is characterized by a partial description of the device or
its environment at a moment or over an interval of time. This is usually
given as a Boolean combination of predicates over STATE-VARIABLES
(which may be discrete or continuous). A device has MODES which are
states of the device. For example a valve may be Fully-open, Partially-
open, or Closed. Every device has two major modes: NORMAL, and

1 • ABNORMAL Known MALFUNCTION MODES are represented as sub-states of
the Abnormal mode. In general Abnormal means that device behavior
cannot be predicted according to the specifications of the Normal mode,
whether or not it can be predicted as belonging to some Malfunction state
for which a representation has been given.

FUNCTIONS - A device has a set of functions associated with each of its
modes. For a Normal mode the functions may be marked as INTENDED
FUNCTIONS or SIDE EFFECTS. Keuneke (1989,1991) distinguished four
types of functions: to ACHIEVE, to PREVENT, to MAINTAIN, and to
CONTROL Iwasaki and Chandrasekaran (1992) have added ALLOW. Each
function type is specified somewhat differently. We will focus here on
Achieve functions, since the representation for them is the oldest and best
developed.

An ACHIEVE function is associated with an ordered pair of states, called
the IF STATE and the To-MAKE STATE. The idea is that the To-Make state
is achieved, starting from the If state, by using the particular function of
the device. Often the To-Make state is described by its difference from the

10

Ii

If state. To explain how the To-Make state is achieved, one points to the
responsible device and function. The If and To-Make states may refer to
conditions at one or more ports; thus the activity of transforming values at
input ports to values at output ports is a kind of Achieve function. This
allows FR to absorb structure-behavior representations (such as VHDL, but
there are many others) that are based only on components, ports,
connections, and mathematical transformations from inputs to outputs.
Sometimes an additional state is associated with a function called the
PROVIDED STATE. It is used to specify conditions (other than those I
specified by the If state) under which the function can be expected to
achieve its To-Make state, e.g., standard operating conditions. One reason
for representing the Provided state is so that, if it is detected that the To-
Make state has not been achieved, even though the If state did occur, then
a diagnostic process will know to check whether the Provided state j
obtained, rather than simply concluding that the device had malfunctioned.
Sometimes a TRIGGERING STATE is also associated with a function, giving
conditions under which the device is expected to immediately begin a I
process to achieve the function.

CAUSAL-PROCESS DESCRIPTIONS - Functions are accomplished by way of I
causal processes. If the process is known for a particular function, a Causal
Process Description (CPD) is associated with the representation for the
function. The CPD is a "causal story" describing how the function is
accomplished. A CPD is a directed graph, where the nodes are States and
the edges are Annotated State Transitions. The CPD may be cyclic, but I
must include a directed path from the If state to the To-Make state (for
Achieve functions). I
ANNOTATED STATE-TRANSITIONS - An annotated state transition may be
used to represent an actual change in the represented device, or merely a
convenient change in state description. In the former case a causal
explanation would be appropriate, but in the latter case an inferential
explanation. For example the transition: I

Temperature (location-i, 150" C)

Temperature (location-1, abnormally-high) j
might be explained as an abstraction step, which would depend on
knowledge of normality conditions.

ii

1

An annotation associates a data object with the state transition; the data
object may be of any of four types:

* CPD - The process by which the state transition occurs is described in
more detail.

* INFERENCE - A change of state description, rather than an actual change
of underlying state. The inference shows how the second state
description follows from the first one, given the requisite knowledge.

* FUNCTION of a Component - A particular component, by performing one
of its functions, is responsible for the state transition. FR thus provides
a kind of recursive decomposition: functions are explained by the
causal processes by which they are achieved, and causal processes are
explained by the functions of the components that are responsible for
state transitions that make up the causal process. This is the way the
FR represents how the functions of a device arise from the functions of
the device's components.

* GENERAL KNOWLEDGE PRINCIPLE - The state transition can be
understood to occur as the result of some general principle, for example
falling as a result of gravity, or increasing in temperature due to
friction. A convenient way to represent general knowledge principles,
especially scientific laws, is in the form of mathematical equations or
functions relating parameters of the antecedent state to parameters of
the subsequent one. When this is done, the FR can be used to guide
numerical simulations: the FR is used to organize the set of equations
constituting the mathematical model of the system, and then the
representation guides the propagation of numerical values through the
set of equations. This way the FR representation qualitatively organizes
the causal dependencies, with the numerical equations giving the
precise details and the basis for calculations. This use of FR has been
explored extensively by Sticklen and his colleagues at Michigan State.

A state transition is "what is accomplished," and its annotation explains
"how it is accomplished." Thus the transition represents a kind of role
(the need to get from the one state to the other), and the annotation points
to the role filler. More than one annotation may be given, corresponding to
knowledge of more than one "actor" capable of playing the role. (This way
FR can encode "multiple realizability.") Besides its annotations, a state
transition may have an associated TRANSITION CONDrIION (a state) under
which the transition can be expected to occur. Such a condition can be
tested during a simulation to determine whether the state variables should
be updated (e.g., whether associated equations apply at that point).

12

Multiple state transitions are allowed to, and from, the nodes in a CPD. By
associating conditions with the state transitions, OR and AND branching can
be represented, and used to represent alternative and concurrent causal
pathways.

As we said, a CPD (causal-process description) is a directed graph whose
edges are annotated state transitions. Inference procedures may traverse
CPDs in either direction, forwards or backwards. Traversing in the
forwards direction, "consequence finding," moves from cause to effect, and I
supports predictive inference. Traversing backwards, "antecedent finding,"
moves from effect to cause, and supports abductive inference. Design and
planning are logically dependent on prediction. Diagnosis and process I
monitoring (any that goes beyond directly-observables) are logically
dependent on abduction. [By saying "logically dependent" we emphasize j
that the prediction and abduction do not necessarily happen explicitly at
run time.] Since a device represented in FR can be considered an organized
assembly of CPDs, each of which is an organized assembly of annotated
state transitions, the device representation as a whole supports prediction
and abduction, and so it supports design and process monitoring.

FR can be used to represent any "mechanism," not just human-designed
artifacts. All that is required is that it be possible to take a "functional
view," or "design stance," towards the mechanism. For example Sticklen 1
(1987) used FR to represent portions of the human immune system, and
more recently to represent portions of an ecosystem. One could use FR to f
represent the causal processes by which clouds achieve their "function" of
producing rain. The mission of FR is to represent "how it works to do such
and so," not per se on representing a designer's intended functions, though j
this is an appropriate use. The distinctive contributions of FR for giving
(part of) the rationale for designs is described in "Functional
Representation as Design Rationale," [13]. A reprint of this paper is [
included as an appendix to this report.

A mechanism represented in FR need not be physical; for example
Allemang (1990) has used it for representing computer programs. To the
degree that they are understood, FR can be used to represent the
mechanisms that drive an economy towards inflation, and those that
polarize a society towards civil war.

Allemang showed how program debugging can be guided by an FR
representation of a program's intended functionality and method. Goel
(1989) showed how to use FR representations for organizing case libraries
of designs, and how the cases can be indexed by function, so a designer can
retrieve candidate designs for components or whole devices. Weintraub

13
r j_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

iV

I (1991) used FR to represent how a particular knowledge-based diagnostic
system works, and showed how to use the representation for knowledge-
base refinement using explanation-based learning from diagnostic
mistakes. Chandrasekaran, Goel, and Iwasaki (1993) describe the use of FR
for capturing design rationale. Darden, Moberg and Josephson (1990,1992)
used FR to represent a historical scientific theory in the domain of
transmission genetics, and used it to model scientific theory change as
"anomaly-driven redesign," i.e., as diagnosing and fixing a fault in the

S| theory. Sticklen and his colleagues have been using FR for organizing
simulations. Iwasaki and Chandrasekaran (1992) demonstrated the use of
FR for design verification. FR representations have been used forI diagnosis. Sticklen (1987) and Punch (1989) explored combining FR-based
diagnosis with "compiled" diagnosis. Keuneke (1989) showed how to use a

Si functional representation to verify diagnostic hypotheses by constructing
causal stories. DeJongh (1991) used an FR representation of antibody-
antigen reactions in a SOAR-based system for medical test interpretation;
his system used SOAR's learning mechanism (chunking) to incrementally
"compile" knowledge for hypothesization, from causality represented in FR.

Nothing in an FR-based representation constrains the causality to be
correct. One could represent the causal mechanisms posited by the
Aristotelian theory of gravitation, or by a shaman's demonology. While
correctness of an FR representation cannot be guaranteed from within the
representation, certain kinds of consistency can be enforced, e.g., that a

I CPD, if it operates as described, will indeed achieve the state required by a
function. FR is intended to capture key aspects of the "logic of
comprehension," more specifically, important conceptual connections that
make up the core of "causal understanding." FR is not complete theory.
Yet it has already displayed impressive functionality and versatility, and
the main path to its improvement should be empirical: by applying it and
criticizing the results.

Visual Reasoning

It is apparent that engineering descriptions of devices and processes have
Soften been expressed in the forms of diagrams and schematic pictures.

* Diagrammatic and pictorial representations clearly play important roles in
human problem solving, as has been noticed by philosophers, cognitive
psychologists, design theorists, logicians and Al researchers. Philosophers
have been interested in the nature of mental imagery for a very long time,

1 14
1 _

and debates about the reality and nature of mental images and visual
representations have also raged in Psychology. Design theorists have
always been interested in the role of sketches and diagrams as design aids.
Modern formal logicians have treated diagrams as merely "heuristic" aids
to be discarded once the correct path to the real proof is obtained, but
historically logicians often made use of diagrams of various sorts in
conveying and using logic. Al, while it flirted with diagrams in its early
decades, especially in the early work on geometric theorem proving, has
neglected, until quite recently, focused research on the possible advantages
of such representations. In AI there is a renewed interest in integrating
symbolic and perceptual representations1 .

Diagrams preserve locality information, or represent it directly. Several
visual "predicates" seem to be efficiently computed by the visual
architecture from this sort of information, e.g., neighborhood relations,
relative size, intersections, and so on. This ability makes certain types of
inferences easy or relatively direct. (It should be emphasized that only
some visual predicates are particularly easily computed by the visual
architecture. There exist numerous inferences for which there is
information directly available in the diagram, but which the visual system
is not necessarily good at making. For example, given a large circle and a
smaller circle, the visual system can directly tell that one is smaller than
the other, but given two complicated shapes, where one of the shapes has a
smaller area than the other, the visual architecture cannot compare them
directly or easily without additional measurements and calculation.) This
ability to make some visual inferences directly explains the role of
diagrams in problems which are essentially spatial, such as geometry
problems. Even here there are interesting strategies by which the diagram
can be additionally manipulated. Additional constructions can be made on
the diagram, enabling a new set of visual inferences to be made in the next
cycles of reasoning. Also, symbolic annotations are made on the diagram
which enables a new round of inferences to be made, not by the visual
architecture but by use of information in the conceptual modality. This
inference may set up information which may then enable additional visual
inferences. This extremely interlaced sequence of visual and symbolic
inference-making is what gives this whole approach its power: each I
modality makes the inferences it is best suited for, and then sets up
additional information which makes it possible for the other modality to
make another set of inferences for which it is best suited.

1
IThe AAAI Spring Symposium, Reasoning With Diagrammatic Representations, was held

at Stanford on March 25-27, 1992. The Symposium was organized by B. Chandrasekamn,
Yumi wasal•d, Hari Narayanan, and Herbert Simon.

is m.

I In this project we have investigated the role of images and diagrams in
qualitative reasoning about the physical world. Narayanan and

I Chandrasekaran (included in the Appendix to this report) illustrate how
much of our commonsense knowledge about how objects in the world
behave under various forces and collisions is actually in the form of
abstract perceptual chunks that directed the reasoning activity. That is,
large parts of both the knowledge and reasoning are in the visual domain.
Representation of object configuration diagrams and predictive knowledge
indexed by shapes as well as visual events were emphasized as central
problems. This is to be contrasted with much of the current work in

if qualitative physics which emphasizes symbolic and axiomatic reasoning in
this task.

I iReconfigurable Devices and Other Applications

Avionics Design: Issues, Methods, and Results

j tDuring the third year of the project, we tested our representations on the
I challenges of reconfigurable devices for aerospace domains. Some devices

are designed so that they can be reconfigured to adapt to events and
S1 changing conditions. Reconfigurability complicates reasoning about

devices, and makes additional demands on device representations that
would support such reasoning. A device may have variable potential
functionality (not all of which will be simultaneously realized). Some
mappings between functions and the causal processes used to attain them
are flexible, that is, device functions will be achieved by different causal
processes, depending on configuration and circumstances. We have arrived
at a treatment for reconfigurable devices which is at least able to handle
the reconfigurability present in the range of execution options available for
realizing specific aircraft mission and tactical goals. We have built a
prototype system that demonstrates how both quantitative and qualitative
forms of simulation may be supported within a unified model of a device.
(This is described in "Representing function for reasoning about software-
hardware reconfiguration," included in the Appendix to this report.) In
this system, design time reconfigurability tradeoffs on capacities needed
for hardware devices can be explored using different methods of

* I prediction.

Specific results on problem solving and multi-level causal modeling for the
Saerospace and avionics domain have been reported in the recent 1992

annal report, and will here only be briefly reviewed. Two technical

16

1

reports are included in the Appendix to this report: "Representing function
for reasoning about software-hardware reconfiguration," and "Multilevel
Causal-Process Modeling: Bridging the Plan, Execution, and Device-
Implementation Gaps."

Designing aerospace systems can potentially benefit significantly from
multilevel modeling that relates higher level mission or tactical functions
to the implementing levels of supporting avionics and aircraft system
subfunctionality. A particular benefit will be in improved levels of fidelity
of test and simulation for loads on underlying devices. Such improvements
can lead to architectural and hardware support for load balancing
strategies discovered while in the design critique and verification process.
A model that relates high level functions and requirements to lower level
systems is needed for an integrated redesign system that can track and
guide design tests and modifications. [The redesign task, of course,
includes many subordinate tasks that are spawned as the task is pursued;
simulation, abduction, classification and diagnosis can become appropriate I
during redesign.]

Also, because the computational demands of simulation can easily grow
beyond capabilities that can reasonably be expected to exist in the next
few decades, we have begun to explore prototype environments for
investigating the feasibility and value of merging various methods of
simulation and prediction. At present a prototype has shown how a
simulation system that aids hardware design can make use of a mixture of I
methods. The system has investigated the capacities of that hardware in
relation to constraints arising from the software functionality that the
hardware is to support.

We selected aerospace and avionics as a domain to test recent advances in j
causal process description and functional decomposition. In previous and
concurrent work, the domains of process engineering, simple manufactured
devices, and biological processes have been found to be useful application I
areas for LAIR causal modeling techniques. One reason for varying
domains is to ensure that the techniques have wide applicability. A second
is that it is thereby likely that we will arrive at a self-contained and useful Iset of domain-independent primitive constructs, with well-defined modes
of composition, specification, and instantiation. The aerospace and avionics
domain is representative of emergent technology domains in which
information and control systems, and human agents, interact in complex
ways to achieve useful functions. Such systems are difficult to design and
verify, and because of their economic or political importance, deserve to
benefit from advances in knowledge based system technology.

17

I
I

The availability of VHDL libraries of avionics devices has also contributed
to selecting avionics and aerospace for attention. Trends in knowledge
based systems favor investigation of ways to ameliorate the burden of
knowledge acquisition by opportunistically drawing upon the information

I that has been and is being accumulated in some computationally accessible
forms. It would be clearly helpful to knowledge based problem solving
technology if the effort is made to find more ways to draw upon
conventionally available data and resources. During the final year of the
project we have investigated several points of application of model-based
reasoning technology in the domain of the new generation of avionics
systems, especially the models that involve explicit hierarchical
representation of function and structure.

Multilevel Causal Process Models

I The experience with the Pilot Associate (PA) project shows that it is
important to consider how a future knowledge base might supportI knowledge compilation for distributed PA modules. Maintenance of a
technical knowledge base has been indirectly studied in the Learning
System for Pilot Aiding (LSPA) project. Using explanation basedf generalization techniques, the LSPA project has shown how new plans can
be included in a knowledge base after the plans are learned from a record
of pilot responses in a simulated mission. Advanced Avionics and the Role
of VHDL models: In a future technical knowledge base, it will be important
to be able to align top level requirements with the lowest level
performance measurements on equipment, including avionics subsystems
at various granularities. VHDL models of avionics subsystems can be used
to explore new capabilities of devices when the new capabilities affect
mission critical performance parameters. This exploration can occur even
in advance of the actual production of the devices. But to do so will
require extensive modeling of the dependencies and interdependencies as
they span both abstraction levels and subsystems. We have been
concerned with developing modeling techniques expressive enough to
capture these dependencies, and to make them available for a wide range
of types of problem solving.

Multilevel Functional Decompositions

"I •During the third year of research, we developed functional decompositions
and causal process models for specific real world problems that would

18

I

challenge our modeling techniques. One goal was to develop insight into I
what organizational principles would be needed for device modeling in the
aerospace engineering domain that could support design, troubleshooting,
tutorial, and simulation uses. One objective was to develop a
representation (model) that takes a top level function (a mission function
with temporal features to it and a time course during which different I
subfunctions are scheduled) and show a vertical slice of how it gets
decomposed into subfunctions and ultimately into hardware components.

Much of our thinking about ordinary devices and how they work involves
viewing those objects as contributing to various causal processes that make
the device realize its functions. Causation has been called "the cement of -

the universe," and few would contest the centrality of causal relations, and
the role they play in organizing our information about systems, events,
components, processes, states, subsystems and functions. One organization
of our causal knowledge of a system, especially a complex system such as a
pilot flying an aircraft, is from overall functionality down to theI
subsystems with their subcomponents and their contributing
functionalities. A functional decomposition of aircraft flights is primarily
of value to show how to move from higher levels of functional description I
to lower levels of causal processes that realize functions of interest. A
decomposition in which the functional parts are both represented and
related then provides the "integrative glue" for subsequent problem
solving across the levels. If we want to know how an equipment change,
for example, might effect parameters governing a maneuver for j
accomplishing some flight goal, the dependencies marked in a functional
decomposition can show us what to look for, and how to figure out what
has changed. Results of using FR for a multi-level functional I
representation connecting maneuver-level phenomena with hardware-
level phenomena are reported in a paper that is included in the Appendix
of this report.

Use of Functional Models for Controlling Simulation for Hardware I
Estimation

We have made considerable progress in developing tools and techniques"I
for carrying out "smarter" simulations of software and hardware avionics
subsystems. Computer simulation of devices usually consumes significant
amount of computational time. Making simulation more efficient and goal-
oriented will help to overcome this problem. One objective of the work
reported here is to show how simulations may be made more efficient by
blending functional representation (FR) with structure-based models.

19

- - - -. -. -- V.

Our system, aimed at intelligent control of simulation, consists of two main
layers:

1. The upper layer generates a set of higher simulation goals based on the
high level tasks of the problem-solver. Some subtasks of diagnosis, design
support, possibly combined with the representation of the role of the
device within a more complex device, can provide high level goals for
simulation.

2. The lower layer economically achieves the basic simulation goals
generated by the upper layer. The savings on simulation time are gained
by focusing on simulation goals while making use of the capabilities of FR
to focus on the relevant causal pathways to project.

The objectives of our investigations of task based control of simulation
have been:
* to show how FR can be smoothly combined with structure-based

models for simulation in a common framework.
! to determine the advantages of combining the two, and whether FR can

help control the simulation.
* to determine whether higher level goals of the problem-solver can be

used to create lower level goals for the simulator.
* to investigate the tradeoffs between controlling simulation by FR and

simulating brute-force by using the structural model alone.

Two prototype systems were developed to accomplish these objectives.
The initial results have shown in principle that simulation of large systems
can be done efficiently by meshing less computationally costly techniques
with focused invocation of relevant computationally demanding methods.
Details of the preliminary results are found in a paper included in the
appendix to this report.

References

Missing numbers can be found in the following section, which lists papers
supported by the project.

[3] D. C. Brown and B. Chandrasekaran. Knowledge and control for a
mechanical design expert system. IEEE Computer Magazine, pages 92-100,
July 1986.

2
I- 20

-- -- S

A.- - -

[4] David C. Brown and B. Chandrasekaran. Design Problem Solving:
Knowledge Structures and Control Strategies. Morgan Kaufmann, San
Mateo, CA, 1989.

[6] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-
level building blocks for expert system design. IEEE Expert, 1(3):23-30,
1986.

[7] B. Chandrasekaran. Generic tasks as building blocks for knowledge-
based systems: The diagnosis and routine design examples. Knowledge
Engineering Review, 3(3):183--210, September 1988. Issue 3.

[12] B. Chandrasekaran and J. R. Josephson. Explanation, problem solving,
and new generation tools: A progress report. In Proceedings of the Expert
Systems Workshop, pages 122--126, Pacific Grove, CA, April 1986.
Science Applications International Corporation.

[16] Matthew DeJongh. Causal Processes in the Problem Space
Computational Model: Integrating Multiple Representations of Causal
Processes in Abductive Problem Solving. PhD thesis, The Ohio State
University, Columbus, OH, 1991.

[18] Ashok Goel, P. Sadayappan, and John R. Josephson. Concurrent
synthesis of composite explanatory hypotheses. In Proceedings of the
Seventeenth International Conference on Parallel Processing, volume III,
pages 156--160, St. Charles, IL, August 1988. The Pennsylvania State
University Press.

[21] Y. Iwasaki and C. M. Low. Device modeling environment: An
integrated model-formulation and simulation environment for continuous
and discrete phenomena. In Proceedings of the First International
Conference on Intelligent Systems Engineering, pages 141-146. The
Institution of Electrical Engineers, 1992.

[22] T. Johnson, B. Chandrasekaran, and J. W. Smith Jr. Generic tasks and
SOAR. In Working notes of the AAAI Spring Symposium on Knowledge
System Development Tools and Languages, Menlo Park, CA, 1989. AAAI.

[24] Todd R. Johnson and Jack W. Smith. A framework for opportunistic
abductive strategies. In Proceedings of the Thirteenth Annual Conference
of the Cognitive Science Society, pages 760-764, Hillsdale, NJ, August
1991. Lawrence Erlbaum Associates. Chicago.

21

:3

[25] John R. Josephson. Reducing uncertainty by using explanatory
relationships. In Proceedings of the Space Operations Automation andt Robotics 1988 Workshop, pages 149--151, Dayton, OH, 1988. NASA, USAF
and Wright State University.

f [26] John R. Josephson, B. Chandrasekaran, and Jack W. Smith, Jr.
Assembling the best explanation. In Proceedings of the IEEE Workshop on
Principles of Knowledge-Based Systems, pages 185-190, Denver, CO,
December 1984. IEEE Computer Society. A revised version by the same
title is available as a LAIR technical report.

[27] John R. Josephson, B. Chandrasekaran, Jack W. Smith, and Michael C.
Tanner. A mechanism for forming composite explanatory hypotheses.
Technical report, OSU CIS LAIR, 1987. This paper is a revised and
expanded version of an earlier paper by the same title which appeared in
IEEE Transactions on Systems, Man and Cybernetics, Special Issue on
Casual and Strategic Aspects of Diagnostic Reasoning, 1986.

[28] John R. Josephson, Diana Smetters, Richard Fox, Dan Oblinger, Arun
Welch, and Gayle Northrup. The integrated generic task toolset, Fafner
release 1.0., Technical report, The Ohio State University, Laboratory f(.,r
Artificial Intelligence Research, Columbus, OH, 1989.

[29] A. Keuneke. Device representation: The significance of functional
knowledge. IEEE Expert, April 1991.

[30] Anne M. Keuneke. I Jnderstanding Devices: Causal Explanation of
Diagnostic Conclusions. PhD thesis, The Ohio State University, Columbus, OH,
1989.

[33] S. Mittal, B. Chandrasekaran, and J. Sticklen. PATREC: A knowledge-
directed data base for a diagnostic expert system. IEEE Computer Special
Issue, 17:51--58, September 1984.
[35] Dale Moberg and John R. Josephson. Implementation note on

diagnosing and fixing faults in theories. In Jeff Shrager and Pat Langley,
editors, Computational Models of Scientific Discovery and Theory
Formation, pages 347--353. Morgan Kaufmann, San Mateo, CA, 1990.

[39] M. Pegah, W. E. Bond, and J. Sticklen. Representing and reasoning
about the fuel system of the McDonnell Douglas F/A-18 from a functional
perspective. IEEE Expert, 1992.

"22

[40] William F. Punch III. A Diagnosis System Using a Task Integrated
Problem Solver Architecture (TIPS), Including Causal Reasoning. PhD
thesis, The Ohio State University, Columbus, OH, 1989.

[41] William F. Punch III, M. C. Tanner, and J. R. Josephson. Design
considerations for PEIRCE, a high-level language for hypothesis assembly.
In Kamal N. Karna, Kamran Parsaye, and Barry G. Silverman, editors,
Proceedings of the Expert Systems in Government Symposium, pages 279--
281, McLean, VA, October 1986. IEEE Computer Society Press.

[43] V. Sembugamoorthy and B. Chandrasekaran. Functional
representation of devices and compilation of diagnostic problem solving
systems. In J. L. Kolodner and C. K. Riesbeck, editors, Experience, Memory
and Reasoning, pages 47--73. Lawrence Erlbaum Associates, Hillsdale, NJ,
1986.

[44] J. Sticklen, B. Chandrasekaran, and W. Bond. Distributed causal
reasoning, Knowledge Acquisition, 1:139--162, 1989.

[45] J. Sticklen, A. Kamel, and W. E. Bond. Integrating quantitative and
qualitative computat'ons in a functional framework. Engineering
Applications of Artificial Intelligence, 4(1):1--10, 1991.

[46] J. Sticklen, A. Kamel, and W. E. Bond. A model-based approach for
organizing quantitative computations. In Second Annual Conference on AI
Simulation and Planning in High Autonomy Systems, Orlando, FL, 1991.

[47] J. Sticklen, A. Kamel, and W. E. Bond. A model-based approach for
organizing quantitative computations. In Second Annual Conference on AI,
Simulation and Planning in High Autonomy Systems, Orlando, FL, 1991.

[48] J. Sticklen, A. Kamel, M. Hawley, and V. Adegbite. Fabricating
composite materials: A comprehensive problem solving architecture based
on a generic task viewpoint. IEEE Expert, March 1992.

[49] J. Sticklen and R Tufankji. Utilizing a functional approach for modeling
biclogical systems. Mathematical and Computer Modeling, 16:145--160,
1992.

[50] Jon Sticklen. MDX-2: An Integrated Medical Diagnostic System. PhD
thesis, The Ohio State University, Columbus, OH, 1987.

23

U

I [5 1] M. A. Weintraub. An Explanation-Based Approach for Assigning Credit.
PhD thesis, The Ohio State University, Columbus, OH, 1991.

Papers and Publications Supported by the Project

The following is a list of papers and publications that were supported inIIsome way by the project reported here. This list is certainly not complete.

[1] Prabal K. Acharyya. Causality and knowledge-based diagnosis of
Snuclear power plants. Master's thesis, The Ohio State University, Columbus,

Ohio, 1992.

[2] D. Allemang. Understanding Programs as Devices. PhD thesis, Ohio
State University, 1990.

[5] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson. The
computational complexity of abduction. In R. J. Brachman, H. J. Levesque,

* iand R. Reiter, editors, Knowledge Representation, pages 25--60. MIT Press,
Cambridge, MA, 1992. Also appears in volume 49 of Artificial Intelligence.

[8] B. Chandrasekaran. Task structures, knowledge acquisition, and
learning, Machine Learning, 4:339--345, 1989.

r[9] B. Chandrasekaran. Design problem solving: A task analysis. Artificial
Intelligence Magazine, 11(4):59--71, 1990.

1 [10] B. Chandrasekaran. Models vs. rules, deep vs. compiled, content vs.
form: Some distinctions in knowledge systems research. IEEE Expert, 1991.

[11] B. Chandrasekaran and Todd R. Johnson. Generic tasks and task
structures: History, critique and new direction. In J. M. David, J. P. Krivine,
and R. Simmons, editors, Second Generation Expert Systems. Springer-
Verlag, New York, NY, to appear.

[13] B. Chandrasekaran, Goel Ashok K., and Yumi Iwasaki. Functional
representation as design rationale. IEEE Computer, January 1993. Special
Issue on Concurrent Engineering.

[14] Lindley Darden, Dale Moberg, Satish Nagarajan, and John Josephson.
Anomaly driven redesign of a scientific theory: The Transgene.2
experiments. Technical Report 91-LD-TRANSGENE, Laboratory for

r 24

1

Artificial Intelligence Research, The Ohio State University, Columbus, Ohio,
1991.

[15] Lindley Darden, Dale Moberg, Sunil Thadani, and John Josephson. A
computational approach to scientific theory revision: The TRANSGENE
experiments. Technical report, The Ohio State University, Laboratory for
Artificial Intelligence Research, Columbus, OH, 1992. Ordering code: 92-
LD-TRANSGENE.

[17] A. K. Goel. Integration of Case-Based Reasoning and Model-Based
Reasoning for Adaptive Design Problem Solving. PhD thesis, The Ohio State
University, 1989.

[19] David H. Herman. An extensible, task-specific shell for routine design
problem solving. PhD thesis, The Ohio State University, Columbus, Ohio,
1992.

[20] Y. Iwasaki and B. Chandrasekaran. Design verification through
function- and behavior-oriented representations: Bridging the gap
between function and behavior. In J. S. Gero, editor, Artificial Intelligence
in Design, pages 597--616. Kluwer Academic Publishers, Netherlands,
1992.

[23] T. R. Johnson. Generic Tasks in the Problem-Space Paradigm: Building
Flexible Knowledge Systems while using Task-Level Constraints. PhD
thesis, The Ohio State University, Columbus, OH, 1991.

[31] Susan T. Korda, John Josephson, and Dale Moberg, Combining
functional representation and structure-based models for smarter
simulation. Technical report, The Ohio State University, Laboratory for
Artificial Intelligence Research, 1992.

[32] Susan T. Korda, John Josephson, and Dale Moberg. Representing
function for reasoning about software-hardware reconfiguration. Technical
report, The Ohio State University, Laboratory for Artificial Intelligence
Research, 1992.

[34] Dale Moberg, Lindley Darden, and John Josephson, Representing and
reasoning about a scientific theory, in AAAI Workshop on Communicating
Scientific and Technical Knowledge, pages 58--64, San Jose, CA, 1992.
AAAI. July 12-16, San Jose Convention Center.

25

K -s ...----b

1 [36] N. H. Narayanan and B. Chandrasekaran. Qualitative simulation of
spatial mechanisms: a preliminary report. In Proc. 21st Annual

I Conference on Modeling and Simulation, Pittsburgh, PA, 1990.

[37] N. H. Narayanan and B. Chandrasekaran. Rigid body motion predictionftby analogical simulation. In Proc. AAAI-90 Workshop on Al and
Simulation, pages 69--74, Boston, MA, 1990.

'1 [38] N. H. Narayanan and B. Chandrasekaran. A visual approach to
qualitative kinematics. In Proc. AAAI-90 Workshop on Qualitative Vision,,
pages 72--76, 1990.

[42] William F. Punch III, M. C. Tanner, J. R. Josephson, and J. W. Smith.
PEIRCE: A tool for experimenting with abduction. IEEE Expert, 5(5):34-44,
October 1990.

[52] B. Chandrasekaran, "QP is More Than SPQR and Dynamical Systems
Theory: Response to Sacks and Doyle," to appear in Computational
Intelligence.

[53] B. Chandrasekaran and N. Hari Narayanan, "Perceptual Representation
and Reasoning," appears in Intelligent Systems, edited by L. S. Sterling,
Plenum Press, New York, 1993.

1 [54] John and Susan Josephson, Ed., Abductive Inference: Computation,
Philosophy, Technology, Cambridge University Press (forthcoming).

[55] N. H. Narayanan, Imagery, Diagrams, and Reasoning, Ph.D. thesis, The
Ohio State University, 1992.

[56] B. Chandrasekaran, "Design problem solving: A task analysis," Artificial
Intelligence Magazine, 11(4):59--71, 1990.

[57] B. Chandrasekaran, Todd R. Johnson, Jack W. Smith, "Task-Structure
Analysis for Knowledge Modeling," Communications of the Association for
Computing Machinery, September, 1992, pp. 124-137.

[58] B. Chandrasekaran, John R. Josephson, and Susan G. Josephson, "FormI and Content Issues in the Abductive Framework for Recognition, LAIR
Technical report.
[59] Michael C. Tanner, Anne M. Keuneke, and B. Chandrasekaran,

"Explanation Using Task Structure and Domain Function Models," to appear

2
! 26

in Second Generation Expert Systems, edited by Jean-Marc David, Jean-
Paul Krivine, and Reid Simmons, Springer-Verlag.

[60] B. Chandrasekaran, Ashok Goel, and Yumi Iwasaki, "Functional
Representation as Design Rationale," appears in IEEE Computer, Special
Issue on Concurrent Engineering, 1993.

[61] B. Chandrasekaran and William Swartout, "Explanation in Knowledge
Systems: The Role of Explicit Representation of Design Knowledge," IEEE I
Expert, June 1991.

[62] Y. Iwasaki and B. Chandrasekaran, "Design verification through
function- and behavior-oriented representations: Bridging the gap
between function and behavior," in J. S. Gero, editor, Artificial Intelligence I
in Design, pages 597--616. Kluwer Academic Publishers, Netherlands,
1992. 1
[63] Marcos Vescove, Yumi Iwasaki, Richard Fikes, and B. Chandrasekaran,
"CFRL: A Language for Specifying the Causal Functionality of Engineered I
Devices," AAAI-93.

[64] Yumi Iwasaki, Richard Fikes, Marcos Vescovi, B. Chandrasekaran, "How
things are Intended to work: Capturing Functional Knowledge in device
Design," IJCAI, 1993. 1
[651 B. Chandrasekaran and Susan Josephson, "Architecture of intelligence:
The problems and current approaches to solutions," appears in Current
Science, Vol. 64, No. 6, March 1993.

[66] B. Chandrasekaran and N. Hari Narayanan, "Perceptual Representation
and Reasoning," appears in Intelligent Systems, edited by L. S. Sterling,
Plenum Press, New York, 1993.

[67] N. Hari Narayanan and B. Chandrasekaran, "Reasoning Visually About
Spatial Interactions," UCAI-91, Sydney, Australia, Morgan-Kaufmann [
Publishers.

[68] Susan T. Korda, John R. Josephson, and Dale Moberg, "Combining -
Functional Representation and Structure-Based Models for Smarter
Simulation," LAIR technical report.

[69] Susan T. Korda, John R. Josephson, and Dale Moberg, "Representing
function for reasoning about software-hardware reconfiguration,"

27

1q

U Technical report, The Ohio State University, Laboratory for Artificial
Intelligence Research, 1992.

I [70] Keith Levi, Dale Moberg, Christopher Miller, Fred Rose, "Multilevel
Causal-Process Modeling: Bridging the Plan, Execution, and Device-J Implementation Gaps."

I Appendices: Included Papers

B. Chandrasekaran, "Design problem solving: A task analysis," Artificial
Intelligence Magazine, 11(4):59--71, 1990.

B. Chandrasekaran, Todd R. Johnson, Jack W. Smith, "Task-Structure
Analysis for Knowledge Modeling," Communications of the Association for
Computing Machinery, September, 1992, pp. 124-137.

B. Chandrasekaran, John R. Josephson, and Susan G. Josephson, "Form and
Content Issues in the Abductive Framework for Recognition, LAIR
Technical report.

Michael C. Tanner, Anne M. Keuneke, and B. Chandrasekaran, "Explanation1 Using Task Structure and Domain Function Models," to appear in Second
Generation Expert Systems, edited by Jean-Marc David, Jean-Paul Krivine,
and Reid Simmons, Springer-Verlag.

B. Chandrasekaran and William Swartout, "Explanation in Knowledge
Systems: The Role of Explicit Representation of Design Knowledge," IEEE
Expert, June 1991.

B. Chandrasekaran, Ashok Goel, and Yumi Iwasaki, "Functional
Representation as Design Rationale," appears in IEEE Computer, Special
Issue on Concurrent Engineering, 1993.

Y. Iwasaki and B. Chandrasekaran, "Design verification through function-
and behavior-oriented representations: Bridging the gap between function
and behavior," in J. S. Gero, editor, Artificial Intelligence in Design, pages

S[597--616. Kluwer Academic Publishers, Netherlands, 1992.

Marcos Vescove, Yumi Iwasaki, Richard Fikes, and B. Chandrasekaran,
"CFRL: A Language for Specifying the Causal Functionality of Engineered

I Devices," AAAJ-93.

II 28

-I-.-. "'b-. - '

I,

Yumi Iwasaki, Richard Fikes, Marcos Vescovi, B. Chandrasekaran, "How
things are Intended to work: Capturing Functional Knowledge in device
Design," IJCAJ, 1993.

B. Chandrasekaran, "QJP is More Than SPOR and Dynamical Systems Theory:
Response to Sacks and Doyle," to appear in Computational Intelligence.

Susan T. Korda, John R. Josephson, and Dale Moberg, "Combining Functional
Representation and Structure-Based Models for Smarter Simulation," LAIR I
technical report.

Susan T. Korda, John R. Josephson, and Dale Moberg, "Representing function I
for reasoning about software-hardware reconfiguration," Technical report,
The Ohio State University, Laboratory for Artificial Intelligence Research, I
1992.

Keith Levi, Dale Moberg, Christopher Miller, Fred Rose, "Multilevel Causal- I
Process Modeling: Bridging the Plan, Execution, and Device-
Implementation Gaps."

B. Chandrasekaran and N. Hari Narayanan, "Perceptual Representation and
Reasoning," appears in Intelligent Systems, edited by L. S. Sterling, Plenum
Press, New York, 1993.

N. Hari Narayanan and B. Chandrasekaran, "Reasoning Visually About j
Spatial Interactions," IJCAI-91, Sydney, Australia, Morgan-Kaufmann
Publishers. I
B. Chandrasekaran and Susan Josephson, "Architecture of intelligence: The
problems and current approaches to solutions," appears in Current Science,
Vol. 64, No. 6, March 1993.

I
1

29

I
I

2
Design Problem Solving:

I A Task Analysis1

B. CHANDRASEKARAN
Laboratory for Al Research, Department of Computer & Information

Science. The Ohio State University, Columbus, OH 43210, USA

THE TASK-STRUCTURE METHODOLOGY

Design problem solving is a complex activity involving a number of
subtasks. and a number of alternative methods potentially available for
each subtask. The structure of tasks has been a key concern of recent
research in task-oriented methodologies for knowledge-based systems
(Clancev. 1985, Chandrasekaran. 1986; McDermott, 1988; Steels. 1990).
One way to conduct a task analysis is to develop a task-structure
(Chandrasekaran. 1989) that lays out the relation between a task.
applicable methods for it, the knowledge requirements for the methods.
and the subtasks set up by them. The major goal of this chapter is to
develop a task structure for design as a knowledge-based problem-solving
activity.

Design as search in a space of subassemblies

Designing artefacts that are meant to achieve some functions within some
constraints is an important class of design with characteristic properties
(Goel and Pirolli. 1989). We concentrate on this class of design problems
in this chapter.

For sufficiently complex versions of the design problem, a common
theme emerges for design as a process: it involves mappings from the

This work has evolved over a number of years. Earlier versions have appeared as Chapter
2 of Brown and Chandrasekaran (1989) and in Research in Engineering Design (1989), 1,
75-KA6 This version previously appeared in Al Magazine (1990). It. 59-71.

Know ledge AtdLd Dcsign Copynght) 1990 American Association for Artificial ilnelligence
ISBN Ii-1-9)tZSO-v All ights of reproduction in any form reserved

i3

e I 30

* 1 -•.mm mmmlimm an nT : -•

B. CHANDRASEKARAN

space of design specifications to the space of devices or components
(often referred to as mapping from behaviour to structure), typically
conducted by means of a search or exploration in the space of possible
subassemblies of components. This is in fact the origin of the frequent
suggestion that design is a svnthetic task.

The design problem is formally a search problem in a very large space
for objects that satisfy multiple constraints. Only a vanishingly small
number of objects in this space constitute even "satisficing", not to speak
of optimal. solutions. What is needed to make design practical are
strategies that radically shrink the search space.

Set against the view of design as a deliberative problem-solving process
is the view of design as an -intuitive", almost instantaneous, process in
which a design solution comes to the mind of the designer. Artistic
creations and scientific theories are often said by their creators to have
occurred to them in this manner. Even when a plausible solution occurs
in this way, the proposal still needs to be evaluated, critiqued and
modified by deliberatively examining alternatives. That is, except in
simple cases. deliberative processes are still essential for real-world
design.

Functions, constraints, components and relations

A designer is charged with specifying an artefact that delivers some
functions and satisfies some constraints. For each design task, the
availability of a (possibly large and generally only implicitly specified) set
of primitive components can be assumed. The domain also specifies a
repertoire of primitive relations or connections that are possible between
components. An electronics engineer, for example. may assume the
availability of transistors. capacitors, and other electrical components
when he is designing a waveform generator. Primitive relations in that
domain are serial and parallel connections between components.

Of course. design is in general recursive: if a certain component that
was assumed to be available is in fact not available, the design of that can
be undertaken in the next round. However, the vocabulary of primitive
components and relations may be rather different from those for the
original device.

Functions can be expressed as a state or a series of states that we want
the device to achieve or avoid under specified conditions. Functions may
be explicitly stated as part of problem specifications, or they may be
implicit in the designer's understanding of the domain. An example of'an
implicit function in many engineering devices is safety: e.g. a subsystem's
role may only be explained as something that prevents leakage of a
potentially hazardous substance, and this function may never be stated
explicitly as part of the design specification (Keuneke, 1989).

31

DESIGN PROBLEM SOLVING: A TASK ANALYSIS

Usually, design specifications will mention, in addition to desired
functionalities. a number of constraints.2 The distinction between
functions and constraints is hard to pin down formally; functions are
constraints on the behaviour or properties of the device. It is, however,
useful to distinguish functions from other constraints, since the former are
the primary reason why the device is desired. Design constraints can be
on the properties of the artefact (e.g. "Should not weigh more than
... "), on the process of making the artefact from its description
(manufacturability constraints), on the design process itself (e.g. "I want
a design within a week"), and so on. A computationally effective process
of design is to generate a candidate design based on functions and then to
modify it to meet the constraints.

Definition of the design task

Consider the following definition of the design task. The design problem
is specified by:

0 a set of functions (explicitly stated by the design consumer as well
as implicit ones defined by the domain) to be delivered by an
artefact and a set of constraints to be satisfied; and

"* a "technology". i.e. a repertoire of components assumed to be
available and a vocabulary of relations between components.

The constraints may pertain to the design parameters themselves, to the
process of making the artefact. or to the design process. The solution to
the design problem consists of a complete specification of a set of
components and their relations, which together describe an artefact that
delivers the functions and satisfies the constraints. The solution is
expected to satisfy a set of implicit criteria as well, e.g. it is not much
more complex or costly than plausible alternatives (ruling out Rube
"Goldberg devices).

The preceding definition also captures the domain-independent character
of design as a generic activity. Planning, programming and engineering
design all share the above definition, as well as many of the subprocesses,
to a significant degree. Nevertheless. there are versions of the design
problem for which the above definition needs to be modified or extended.
Examples are:

0 At the start of the design process only a minimal statement of
functions and constraints may be available, and additional ones

" The constraints that are described as part of the design specification ought to be

distinguished from the term -constraint- that appears in description of design methods, such
as "constraint-directed problem solving".I

it

32

B. CHANDRASEKARAN

may be developed in parallel with the design process itself.
0 Some design problems involve extensive trade-off studies, where

a part of the design process is search for ways in which the
functions or the constraints may be relaxed or otherwise
modified.

* "Tinkering" is a time-honoured method of invention where the
design space is being explored without any specific set of
functions in mind. Functions may be identified for structural
configurations that arise during exploration.

* The world of primitive objects may be very open-ended, and only
implicitly specified.

The design framework that I will be- presenting can be extended to cover
these variations.

THE TASK-STRUCTURE

Let us say we have a problem-solving task 3 T, and let M be some method
suggested for the task. A method can be described in terms of the I
operators it employs, the objects that it operates on, and any additional
knowledge about how to organize operator application to satisfy the goal.
At the knowledge level, the method is characterized by the knowledge i
the agent needs to set up and apply the method. Different methods for
the same task may call for knowledge of different types.

To take a simple example, for the task of multiplying two multidigit I
numbers, the "'logarithmic method" consists of the following series of
operations: extract the logarithm of each of the input numbers, add the
two logarithms, and extract the anti-logarithm of the sum. (The operators
are italicized. Their arguments as well as the results are the objects of this
method.)

Note that one does not typically include, at this level of description of
the logarithmic method, specifications about how to extract the logarithm !
or the anti-logarithm, or how to do the addition. If the computational

model does not provide these capabilities as primitives, performing these
operations can be set up as subtasks of the method. Thus, given a!
method, applying any of the operators of a method can be set up as a !
subtask. Some of the objects a method needs may be generic to a class of
problems in a domain. As an example, consider hierarchical classification
using a malfunction hierarchy, a common method of diagnosis. Opera- I
tions of "Establish-Hypothesis" and "Refine-Hypothesis" are applied to
the hypotheses in the hierarchy. These objects are useful to solve many

In this chapter. I use the terms -task" and -goal- interchangeably.

33 1

- -. , -

WI

DESIGN PROBLEM SOLVING: A TASK ANALYSIS

instances of the diagnostic problem in the domain. If the malfunction
hypotheses are not directly available, generation of such hypotheses can
be set up as subtasks. A common method for the generation of such
objects is compilation from so-called "deep" knowledge. Structure-
function models of the device that is being diagnosed have been proposed
and used as deep models to generate malfunction hypotheses
(Chandrasekaran et al., 1989).

There is no finite set of mutually distinct methods for a task, since there
can be numerous variants on a method. Nevertheless, the term "method"
is a useful shorthand to refer to a set of related proposals about
organizing computation.

Types of methods. One type of method is of particular importance in
knowledge-based systems: methods which can be viewed as a problem-
space search (Newell, 1980). Designer-Soar (Steier, 1989) and AIR-CYL
(Brown and Chandrasekaran, 1989) are examples of design systems which
explore search spaces. For example, AIR-CYL can be understood as
searching in a space of parameters for the components of an air-cylinder
by using design plans which propose and modify parameter values.

Another class of methods consists of algorithms which directly produce
a solution without any search in a space of alternatives, e.g. producing a
set of design parameters by numerically solving a set of simultaneous
equations. Such algorithms are only available for so-called well-structured
problems.' Most real-world problems are ill-structured, and the role of
domain knowledge is to help set up spaces of alternatives and to help
control the search in those spaces.

A task analysis of this type can be continued recursively until methods
whose operators are all directly achievable (within the analysis frame-
work) are reached. In the following task analysis for design, I will
explicitly indicate as subtasks only those to which I want to draw specific
attention in my discussion. Other operators may exist which require
additional problem solving as well.

fi

A TASK-STRUCTURE FOR DESIGN: THE
PROPOSE-CRITIQUE-MODIFY FAMILY OF METHODS

The most common top-level family of methods for design can be
characterized as Propose-Critique-Modify (PCM) methods. These

" I subscribe to the view that such algorithms are simply degenerate cases of search where
the agent has sufficient knowledge to make the correct choice at each choice point. But,
pragmatically speaking. it is best to think of algorithmic methods as a separate type. since
implementing them does not require supporting search in general.

~1I
- --...-

B. CHANDRASEKARAN

methods have the subtasks of Proposal of partial or complete design
solutions; Verification of proposed solutions; Critiquing the proposals by
identifying causes of failure, if any; and Modification of proposals to
satisfy design goals. These subtasks can be combined in fairly complex
ways, but the following is one straightforward way in which a PCM
method may organize and combine the subtasks.

Example PCM method
Step 1. Given design goal, Propose solution. If no proposal, exit with

failure.
Step 2. Verify proposal. If verified, exit with success.
Step 3. If unsuccessful. Critique proposal to identify sources of failure. If

no useful criticism available, exit with failure.
Step 4. Modify proposal and return to 2.

While all of the PCM methods will need to have some way to achieve
the iteration in Step 4 above, there can be numerous variants on the way
the methods in this class work. For example, a solution may be proposed
only for a part of the design problem, a part deemed to be crucial. This
solution may then be critiqued and modified. This partial solution may
generate additional constraints, leading to further design commitments.
Thus subtasks can be scheduled in a fairly complex way, with subgoals
from different methods alternating. It is hard to identify a separate
method for each such variation. The implications of this for a design
architecture are discussed in the concluding sections of the chapter.

In this chapter, most of the attention is devoted to the Proposal subtask,
since most of the design knowledge, per se, is used in this subtask. Every
task has a default method: one which uses compiled knowledge to get a
solution without any problem solving. This method is practical only in
simple cases. Because this method is potentially applicable to simple
versions of all tasks, and has no interesting internal structure, I will not
explicitly mention it in my discussion.

A task analysis should provide a framework within which various
approaches to design can be understood. I will use selected examples of
existing Al systems to illustrate the ideas, but there will be no attempt to
provide a survey of all Al work on design.

Methods for proposing design choices4 Design proposal methods use domain knowledge to map part or all of the
specifications to partial or complete design proposals. Three groups of
methods can be identified:

* Problem decomposition/solution composition. In this class of
methods, domain knowledge is used to map subsets of design

35

- . .- .. ._ _ _ _ _ _

I

i DESIGN PROBLEM SOLVING: A TASK ANALYSIS

specifications into a set of smaller design problems. Use of design
plans is a special case of decomposition methods.

"* Retrieval of cases from memory which correspond to solutions
for design problems which are similar or "close" to the current
problem.

"* Families of methods that solve the design problem as a constraint
satisfaction problem and use a variety of quantitative and
qualitative optimization or constraint satisfaction techniques.

Decomposition and case-based methods help reduce the size of the
search spaces. since the knowledge they use can be viewed as the
compilation or chunking of earlier (individual or community) search in
the design space. Conversion of a design problem into one amenable to
global optimization algorithms requires substantial a priori knowledge of
the structure of the design problem.

Decomposition/solution composition

I will treat this method in terms of all the features that an information
processing analysis calls for: types of knowledge and information needed
and the inference processes that operate on this form of knowledge.

Knowledge needed is of the form D --* D1, D2, ... D,, where D is a
given design problem, and Dis are "smaller" subproblems (i.e. associated
with smaller sea :ch spaces than D). A number of alternative decomposi-
tions for a problem may be available, in which case a selection needs to
be made, with the attendant possibility of backtracking and making
another choice. Repeated applications of the decomposition knowledge
produce design hierarchies. In well-trodden domains, effective decom-
positions are known and little search for decompositions needs to be
conducted as part of routine design activity. For example, in automobile
0,"sign. the overall decomposition has remained largely invariant over
several decades.

Decomposition knowledge in design generally arises when the func-
tional specifications can be decomposed into a set of subfunctions
(Freeman and Newell, 1971). Design decomposition knowledge may
come in the form of part-subpart decomposition, if a direct mapping is
available between functions and components.

The following are two important subgoals of the Decomposition/
Solution Composition method,

* Generating specifications for subproblems. The functional and
other specifications on D need to be translated into specifications
for each of the subproblems DI, ... D..

* Gluing the subproblem solutions into a solution to the original
design problem.

i!
!3

-Y -_ i iil

B. CHANDRASEKARAN

In most routine design, these subtasks are not explicit: either they are
solved by compiled knowledge or the problem specification already
implies a solution to these problems. In the general case, however,
additional problem solving is needed.

How a Decomposition/Solution Composition method might actually
organize and use the subgoals is given by the following example.

Example problem decomposition/solution recomposition method
Step I. (Search in the space of decompositions.) Choose from among

alternative decompositions for the given design problem D.
Step 2. Generate specifications for subproblems in the chosen decom-

position.
Step 3. Set up each subproblem as a design problem. Solve them in some

order determined by control strategies and other domain
knowledge (e.g. progressive deepening).

Step 4. If subproblems solved, Recompose solutions of subproblems into
solutions for D, and exit.

Step 5. If failure in Steps 3 or 4, go to Step 1 to make another choice, or
relax specifications and go to Step 2.

All the caveats mentioned in connection with the PCM method earlier
apply. Specifically, control of how subproblems are solved may be quite
variable and more complex than indicated above. Some of the sources of
this complexity are discussed below.

Given a design problem, it may not always be possible to generate all
the constraints for its subproblems from the original problem's specifica-
tions alone. In many domains, constraint generation for some subproblems
alternates with partial design of others, which in turn provides additional
information for constraints for yet other subproblems. There may be a
complex process of commitments and backtracking. In extreme cases,
most of design problem solving may consist of search for parameters that
make all the subproblems solvable. For example, the Propose and Revise
method (Marcus et al., 1985) involves making commitments to some
subparts of the design problem (Propose part) and then Revising these
when some constraint for other parts of the problem are violated.

In configuration tasks (Mittal and Frayman, 1989), subproblem
solutions are given as part of the problem (i.e. the desired functions are
mapped into a set of key components), and the remaining task is
dominated by the subtasks of specification generation and solution recom-
position. In order for components A and B to be connected, certain pre- and
post-conditions may need to be satisfied. If these conditions are not
available a priori, they need to be derived from configuration behaviours.
Discovery of connection conditions and checking of whether specific
configuration proposals result in desired functional behaviours can often use
simulation as a problem solving method (e.g. Kelly and Steinberg, 1982).

37

I

DESIGN PROBLEM SOLVING: A TASK ANALYSIS

There can be complex dependencies between constraints among
subproblems. In situations where not only are commitments for D, going
to constrain the specifications for D2, . . . Dn, but the commitments for
the latter may further specify constraints for D, as well, a strategy that
Steier (1989) has identified as progressive deepening is a natural strategy
to emerge. This strategy involves making some commitment for each
subproblem at each pass, using these commitments to generate additional

7 specifications, undoing earlier commitments as needed, and repeating this
process.

Control issues. There are two sets of control issues, one dealing with
which sets of decompositions to choose (in Step 1 in the example
Decomposition/Recomposition method above), and the other concerned
with the order in which the subproblems within a given decomposition
ought to be attacked (Step 3). For the first problem, in the general case,
the decomposition will produce an AND or an OR node. The
decompositions in an AND node will all need to be solved, while for anI> OR node only one of the decompositions will need to be solved. Finding
the appropriate decomposition requires search in an AND/OR graph. But
as a rule such searches are expensive. In domains where multiple
decompositions are possible but there are no easily formalizable heuristics
to choose among them, the machine may be effective in proposing
alternatives while the human evaluates them and makes a selection.

In routine design, extensive searches in the spaces of possible
decompositions are avoided by limiting the number of possible decom-
positions at each choice point to one or very few. This leads to the
availability of a design hierarchy for design in that domain.

Transformation methods (Balzer, 1981) for algorithm synthesis are
examples of decomposition methods. In this approach, a set of high-level
specifications of an algorithm is converted into a series of programming-
language-level commitments. This is done by mapping subsets of
specifications into a "component" for which some implementation-level
commitments have been made. Each such commitment will typically
constrain other implementation commitments. Because of this, search in
the space of possible transformations may often be needed. In most
implemented transformation systems, humans choose from a set of
alternative transformations presented by the design system.

Regarding the order in which subproblems in a given decomposition
are to be attacked, the main constraint is knowledge about dependencies
between subproblems that I just discussed. When the subproblems are
organized in the form of a design hierarchy, the default control is control
top-down, but actual control can be complicated. For example, a

, I component at the leaf level of the design hierarchy may be the most
limiting component and many other components and subsystems can only

I

i 38

B. CHANDRASEKARAN

be designed after that is chosen. Part of the design process in this case
will appear to have a bottom-up flavour. In general, appropriate control
strategies come about based on the dependencies between subproblems.

Design plans. A special case of decomposition knowledge is design
plans, representing a precompiled partial solution to a design goal
(Friedland, 1979; Rich, 1981; Johnson and Soloway, 1985; Mittal et al.,
1986; Brown and Chandrasekaran, 1989). A design plan specifies a
sequence of design actions to take for producing a design or part of a
design. Design commitments made by a design plan may be abstract, i.e.
choices are made not at the level of primitive objects but rather
intermediate level design abstractions which need to be further refined at
the level of primitive objects. For example, in designing an automobile, a
design plan may commit to choice of diesel engine as the power plant.
While this is a design proposal in the sense that a commitment is being
made, the diesel engine design itself is not specified in detail at this stage,
but posed as a subtask to be solved by any of the available methods.

Thus a design plan D may set up other design problems D1,. . ., D', as
subproblems, and, in this sense, it is decomposition knowledge in a strong
form: how the main problem goals are transformed into goals to be
allocated to subproblems and how the solutions to the subproblems are
put back together for obtaining a solution to the original design problem
are all directly encoded in the plan.

Design plans can be indexed in a number of ways. Two possibilities are
to index by design goals (for achieving rgoab, use <plan>), or by
components (for designing <part,, use plan,). Each goal or component
may have a small number of alternative plans attached to it, with perhaps
some additional knowledge that helps in choosing among them.

Control and inference issues in the use of plans are similar to those in
the general case of decomposition: alternative plans are possible and, in
routine design, design plan hierarchies may emerge. The default control
strategy can be characterized as instantiate and expand. That is, the plan's
steps specify some of the design parameters, and also specify calls to
other design plans. Choosing an abstract plan and making commitments
that are specific to the problem at hand is the instantiation process, and
calling other plans for specifying details to portions is the expansion part.

A number of additional pieces of information may be needed or
generated as this expansion process is undertaken. Information about
dependencies between parts of the plan may need to be generated at
runtime (e.g. discovering that certain parameters of a piston would need
to be chosen before that of the rod), and some optimizations may be
discovered at run time (e.g. the same base that was used to attach
component A can also be used to attach component B). NOAH

39 '

I
DESIGN PROBLEM SOLVING: A TASK ANALYSIS

(Sacerdoti. 1975) is an early example of runtime generation of
dependencies and optimization.

Design proposal by case retrieval

A major source of design proposal knowledge is design cases--instances
of successful past design problem solving. Cases can arise from an
individual's problem-solving experience or that of an organization such as
a design firm or a design community. Cases can be episodic (i.e. represent
one problem-solving episode) or can represent the result of abstraction
and generalization over several episodes. Design plans can be considered
to be fairly abstracted versions of numerous cases.

Sussman (1973) proposed that a design strategy is to choose an already
completed design that satisfies constraints closest to the ones that apply to
the current problem, and modify this design for the current constraints.
Schank (1982) has emphasized the importance of case-based problem
solving in general. Recent work on case-based reasoning in planning and
design (Goel and Chandrasekaran, 1989a; Hammond, 1989) explores this
family of methods. In case-based reasoning, "almost correct designs" are
obtained by searching a memory bank of previous cases for a design that
is similar to the one that is currently being sought.

The heart of case-based design proposal is Matching: how to choose the
design that is "closest" to the current problem? Clearly some features of
the cases are more important in matching than others. Some notion of
prioritizing over goals or differences, in the sense of means-ends analysis,
may be needed.

Indexing of cases with a rich vocabulary of features of the case and the
goals it satisfies is a key idea in case-based reasoning. Matching and

retrieval can be driven by associative processes on these indices. Much of
the work in case-based planning has used domain-specific goals to index
cases. For the problem of designing engineering artefacts, the design
cases need to be indexed in terms of the output behaviours of interest.
For example. Goel and Chandrasekaran (1989b) propose that design
cases be indexed using their functions. More generally, they show how cases
can be indexed by a causal representation that relates the structure of the
device to its function, and how this method of indexing can help in retrieval.
Goel (1989) has a proposal for how matching and retrieval can benefit
from a principled representation for design goals, states for the device, 41
and the substances the device operates with.

Case-based design proposal has a lot in common with the use ofanalogical reasoning in design. Maher et al. (1988) propose that
analogical reasoning in design is at the heart of design creativity.

'I
F

14

-1

B. CHANDRASEKARAN

Design proposal by constraint satisfaction

Under fairly strong assumptions, particular classes of design problems can
be formulated as optimization, constraint satisfaction or algebraic
equation-solving problems. What is common to all these formulations is
that the solution lies in a space determined by simultaneous constraints,
and specific classes of computational algorithms may be available to
locate that space directly. In particular, when the structure of the design
is already specified, but parameters are determined by the specifics of a
design problem, numerical or symbolic optimization techniques may be
useful for design proposal. Linear, integer and dynamic programming
techniques have been used to solve design problems formulated in this I
manner.

Some versions of the constraint satisfaction problem can be solved by
constraint propagation, Constraints can be propagated in such a way that t
the component parameters are chosen to converge incrementally on a set
that satisfies all the constraints (Stefik, 1981).

Formally, all design can be thought of as constraint satisfaction, and
one might be tempted to propose global constraint satisfaction as a
universal solution for design. But unless knowledge is employed to reduce
the size of the space (such as by decomposing problems into smaller
problems), design by constraint propagation can be computationally
intractable. Problem decomposition can create subproblems with sufficient
small problem-spaces in which constraint satisfaction methods can work
without excessive search.

Verification

This subtask involves checking that the design proposal satisfies the
functional and other specifications. These are two families of methods for
this:

"* Attributes of interest can be directly calculated or estimated by
means of domain-specific algorithms or formulae (e.g. use of
algebraic formula to calculate total weight or cost, or use of
finite-element methods to calculate stress distribution). Direct
calculation methods are not of much interest from an AI point of
view.

"* Behaviours of interest can be derived by simulation. These
behaviours can be checked against requirements.

Simulation takes as input a description of the structure of the system
and generates as output the behaviours of interest. The methods used in
simulation should mirror the rules by which the behaviour of assemblages
of components is composed from the properties of the components.

I

41

ib ..

I

i DESIGN PROBLEM SOLVING: A TASK ANALYSIS

There are quantitative simulation methods which use equations that
directly describe the results of this composition. These equations again
are domain-specific. For example, differential equations may be used to
describe the behaviour of a reaction in a reaction vessel. The structural
description in a proposed design of a reaction vessel can be translated
into parameters of the differential equation and the equation simulated to
derive behaviours of interest.

There are generic Al techniques for generating behaviour from
structure that could be useful for simulation. Qualitative simulation (see
Forbus, 1988. for a survey of the current state of the art), consolidation
(Bylander. 1988) and functional simulation (Sticklen, 1987) are examples
of Al techniques that are available for deriving behaviours given
structure. A proposed design can be simulated under various input
conditions and the behaviour evaluated. AlU these techniques take as
input a structural description and, using qualitative descriptions of
component behaviours and rules of composition, mimic the operation of
the device to produce qualitative descriptions of behaviour. Qualitative
and quantitative simulation may alternate: a qualitative simulation may
identify behaviours likely to be in unacceptable ranges and a more
focused quantitative procedure may be used to get more precise values.

Visual simulations. Visual simulation of artefacts is widely used by
human designers in verification. Designs are imagined, represented, and
communicated pictorially in domains such as architecture and mechanical

i engineering. (See Goel and Pirolli (1989) for design protocol studies
which show the prevalence of images during design.) It is clear that there
is a need for pictorial representations and symbolic representations to
coexist in design systems. A majur use of imaginal representations is in

I simulation of design proposals, but they play a role as well in making
design proposals by analogy with other domains. Little Al research has
been done so far on visual representations that have the qualities needed
for pictorial reasoning and imagination and that also have the symbolic
properties needed for arbitrary referencing and composition by parts. A
beginning in this direction is proposed in Chandrasekaran and Narayanan

- (1990) and use of such representations for simulation is discussed in
Narayanan and Chandrasekaran (1991).

Critiquing

Critiquing is the subtask in which causes of failure of a design are
analysed: parts of the structure are identified as potentially responsible
for the unacceptable behaviour or constraint violation. Critiquing is really
a generalized version of the diagnostic problem, i.e. a problem of
mapping from undesirable behaviour to parts of the structure responsible

I

|42j

I
I

H. CHANDRASEKARAN

for the behaviour. Modification of design can be directed to these
candidates. Of course, localization of responsibility for failure will not
always work: the entire approach to the design may need to be changed.

What is needed for criticism is information about how the structure of !
the device contributes to (or is intended to contribute to) the desired
overall behaviour. An Al method that is commonly used for this subtask
is dependency analysis (Stallman and Sussman, 1977). This method is
applicable if explicit information is available in the form of dependencies, I
i.e. knowledge that explicitly relates types of constraint or specification
violations to prior design commitments. For example, if total weight of a
proposed design is higher than the weight limit, domain-specific I
knowledge is usually available which identifies parts whose weights are
both sufficiently large and can be adjusted. Dependencies may be
discovered by analysing pre- and post-conditions of design operators. For i
example, if a certain output behaviour (say, voltage in an electronic
device) of a proposed design is excessive, the inputs the output stage can
be traced back to identify which of the components upstream may have
contributed to the specific output. This analysis may use simulation as a
subtask.

Most of the proposals for critiquing that have been in the case-based
reasoning literature use domain-specific critics and are variations on pre- I
compiled patterns of relating output behaviour to possible changes. The

approach of Goel (1989) for critij,,g a design proposal is based on a
functional analysis of the proposed design. If a design proposal is I
endowed with causal indices that explicitly indicate the relation between
structure and intended functions, then it is relatively easy to identify
substructures for modification (Goel and Chandrasekaran, 1989a).

Modification

Modification as a subtask takes information about failure of a candidate
design as its input and then changes the design so as to get closer to the
specifications. Basically, what is required is change of a functional subpart
of the proposed design, or addition of components to the proposed
design, so as to satisfy the design specifications. Depending on how I
informative failure analysis is and what types of knowledge are available.
a number of problem-solving processes are applicable. Some of them are
briefly outlined in the following paragraphs.

Modification may be driven by a form of means-ends reasoning, where
the differences are "reduced" in order of most to least significant.
Especially useful here is knowledge that relates the desired changes in 1
behaviour to possible structural changes (Gol, 1909).

A related search approach is one where modification is done by some
form of hill-climbing. In this method, parameters are changed, direction of 11

41

[[

I
I

DESIGN PROBLEM SOLVING: A TASK ANALYSIS

improvement is noted, and additional changes are made in the direction
of maximal increment in some measure of overall performance. This is
especially applicable where the design problem is viewed as a parameter-
choice problem for a predetermined structure (e.g. the Dominic
system-Dixon et al., 1984).

Modification is straightforward in dependency-directed methods. Once
the dependency point is reached by backtracking, simply an alternative
choice is made from the list of finite choices available.

Some systems that perform routine design problems have explicit
knowledge about what to do under different kinds of failures. This
information can be attached to the design plans (DSPL; Brown and
Chandrasekaran, 1989).

Criticism may reveal the need to add new functions. If these functionsI can be added modularly, i.e. by the creation and integration of separate
substructures that deliver the functions, the design of the additional
structures can be viewed simply as new design problems to be solved by
all the methods available for design. The subtasks of generation of
specifications for these additional design problems and integration of their
solutions were discussed in the section on problem decomposition and
solution recomposition.

DISCUSSION OF THE TASK-STRUCTURE

I The task-structure for design described in the preceding section5 is
summarized in Table 1. A task-structure is a description of the task,

V |proposed methods for it, their internal and external subtasks, knowledge
required for the methods, and any control strategies for the method. Thus
the task analysis provides a clear road map for knowledge acquisition.
How the analysis can be used to integrate the methods and goals is
discussed in the following section.

Choice of methods. How are methods to be chosen for the various
tasks? The following is a set of criteria.

0 Properties of the solution. Some methods may produce answers
which are precise, while answers of the others may only be
qualitative. Some of them may produce optimal solutions, while
others may produce satisficing ones.

* Properties of the solution process. Is the computation pragmatic-
ally feasible? How much time does it take? Memory?

The task-structure described here is inherently incomplete: additional methods
may be identified for any subtask as a result of further research.

4I.

1 44

__ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _

B. CHANDRASEKARAN

Table 1

Task Methods Subtasks

Design Propose, Critique, Propose, Verify
Propose Modify family (PCM) Critique, Modify

Decomposition methods Specification
(incl. Design Plans) generation for
and Transformation subproblems
methods

Solution of
subproblems
generated by
decomposition

(another set of

Design-tasks)

Composition of
subproblem
solutions

Case-based methods Match and retrieve
similar caseGlobal

constraint-satisfaction
methods

Numerical
optimization
methods

Numerical or
Symbolic constraint
propagation methods

Specification
generation for
subproblems

Constraint propagation, Simulation to decide
including constraint how constraints
posting propagate

Composition of Configuration methods Simulation for
subproblem prediction of
solutions behaviour of

candidate
configurations

Verify Domain-specific
calculations or
simulation

Qualitative simulation,
Consolidation

Visual simulation

45

•..-e . •. • "• _- -: . b - -. . -

I
I
I DESIGN PROBLEM SOLVING: A TASK ANALYSIS

Table I continued

Task Methods Subtasks

Critique Causal behavioural
analysis techniques to
assign responsibility

Dependency-analysis
techniques

I Modify Hill-climbing-like
methods which
incrementally improve
parameters

Dependency-based
changes

Function-to-structure
mapping knowledge

Add new functions Design new function.
Recompose with

* candidate design

For each task, there is a default "compiled knowledge' method which has domain-
specific knowledge to achieve it directly and which is not included above. For

I subtasks such as critiquing, only families of generic Al methods are indicated,
without explicit indication of their subtasks

0 Availability of knowledge required for applying the method.
For example. a method for design verification might require that
we have available a description of the behaviour of the device as
a system of differential equations; if this information is not
available directly and if it cannot be generated by additional
problem solving, the method cannot be used.

A delineation of the methods and their properties helps us to move
away from abstract arguments about ideal methods for design. Each

method in a task-structure can be evaluated for appropriateness in a given
situation by asking questions reflecting the above criteria. While some ofj this evaluation can take place at problem-solving time, much of it can be

done at the time of design of the knowledge system; this evaluation can
be used to guide a knowledge-system designer in the choice of methods to
implement.

£ Different types of methods may be used for different subtasks. For
example, a design system may use a knowledge-based problem-solving
method for the subtask of creating a design, but use a quantitative
method such as a finite-element method for the subtask of evaluating the
design.

46

1 46j

.* --.

B. CHANDRASEKARAN

IMPUCATIONS FOR AN ARCHITECTURE FOR DESIGN PROBLEM
SOLVING

Because of the multiplicity of possible methods and subtasks for a task, a
task-specific architecture that is exclusively for design is not likely to be
complete: even though design is a generic activity, there is no one generic i
method for it. Further, note that subtasks such as simulation are not
particularly specific to design as a task. Thus if the knowledge for these
modules is embedded within a design architecture, either they will be
unavailable for other tasks which require simulation as a subtask, or the
knowledge for these tasks will need to be replicated. Thus, instead of
building monolithic task-specific architectures for such complex tasks, a
more useful architectural approach is one that can invoke different !
methods for different subtasks in a flexible way.

Following the ideas in the work on task-specific architectures, we can
support methods by means of special-purpose shells that can help encode I
knowledge and control problem solving. This is an immediate extension
of the generic task methodology (Chandrasekaran, 1986). These methods
can then be combined in a domain-specific manner, i.e. methods for
subtasks can be selected in advance and included as part of the I
application system. Alternatively, methods can be chosen at runtime for
the tasks recursively, based on the criteria listed above in the paragraph
on choice of methods. For the latter, what is needed is a task-
independent architecture with the capability of evaluating different
methods, choosing one, executing it, setting up subgoals as they arise
from the chosen method and repeating the process. Soar (Rosenbloom et
al., 1987), BBI (Hayes-Roth, 1985) or TIPS (Punch, 1989) are good
candidates for such an architecture. This approach combines the
advantages of task-specific architectures and the flexibility of runtime
choice of methods. The DSPL++ work of Herman (1992) is an attempt
to do precisely this.

Using method-specific knowledge and strategy representations within a
general architecture that helps select methods and set up subgoals is a
good first step in adding flexibility to the advantages of the task-specificarchitecture view. However, it can have limitations as well. For many

real-world problems, switching between methods may result in control
that is too large-grained. In order to see this, consider my earlier
description of a PCM method. The method description calls for a specific
sequence of how the operators of Propose, etc., are to be applied. As
pointed out in my discussion on the PCM method, numerous variants of I
the method, with complex sequencing of the various operators, may be
appropriate in different domains. It would be a hopeless task to try to
support all these variants of the methods by method-specific architectures
or shells. It is much better in the long run to let the task-method-subtask

47

I
II

DESIGN PROBLEM SOLVING: A TASK ANALYSIS

analysis guide us in the identification of the needed task-specific

knowledge and let a flexible general architecture determine the actual
sequence of operator application by using additional domain-specific
knowledge. The subtasks can then be combined flexibly in response to
problem-solving needs, achieving a much finer-grained control behaviour.
(See Johnson et al.. 1989 for realization of generic task ideas in Soar.)

The task structure also makes clear how "Al-like" methods and other
algorithmic or numerical methods can be flexibly combined, much as
human designers alternate between problem solving in their heads and
formal calculations. For example, a designer may need to make sure that
the maximum current in a proposed circuit is less than the limits for its
components, and at that point he may set up current and voltage
equations and solve them. If he finds that the current in one branch of the
circuit is more than the permitted limit, he may go back to critiquing the
design to look for possible places to change the design. The task-structure
view that I have outlined shows how computer-based design systems can
also similarly engage in a flexible integration of problem-solving and
other forms of algorithmic activity. The key is that the top-level control is
goal-oriented, and it can set up subgoals and choose methods that are
appropriate to the subgoal. If the appropriate method for a subtask is a

, |numerical algorithm, that method can be invoked and executed, at the
fI end of which control reverts to the top level for pursuing other goals.

'I CONCLUDING REMARKS

Over the last several years. there have been a number of working systems
which perform some version of the design task in some domain. These
design proposals do not always bring out what is common among the
different tasks of design. There have also been attempts to develop
formal "first principles" algorithms for design that are meant to cover all
types of design. Such general algorithms are, however, computationally
intractable, and are not particularly helpful in identifying the sources of
power and tractability in human design problem solving in most domains.

The view elaborated here is that there is a generic vocabulary of tasks
and methods that are part of design, and that design problems in different
domains simply differ in the mixture of subtasks and methods. Expertise,
i.e. methods, and knowledge and control strategies for them, emerge
over a period in different domains so as to help solve the task in a given
domain tractably. The key to understanding all this is thus not in a
uniform algorithm for design. but in the structure of the task, showing
how the tasks, methods, subtasks and domain knowledge are related. The
analysis also clarifies the relationship between task-specific architectures
and more general-purpose architectures for knowledge systems.

L 4

I

48

B. CHANDRASEKARAN S
ACKNOWLEDGEMENTS

Many ideas from my collaborations with the following have found their
way into this chapter: with David C. Brown and Ashok Goel on design
problem solving, and with Tom Bylander, John Josephson, Todd
Johnson, Jack W. Smith and Jon Sticklen on generic tasks. I thank John
Gero, Ashok Goei, Mary Lou Maher, Dale Moberg and David Steier for
very useful comments on earlier drafts. The usual caveat holds good that
they do not necessarily agree with all of what I am saying in the chapter.
Support from AFOSR (grants 87-0090 and 89-0250) and DARPA
(contracts F30602-85-C-0O10 and F49620-89-C-0110) is gratefully
acknowledged.

REFERENCES

Balzer, R. (1981). Transformation implementition: an example. IEEE
Transaction on Software Engineering, SE-7, 3-14.

Brown, D. C. and Chandrasekaran, B. (1989). Design Problem Solving:
Knowledge Structures and Control Strategies. San Mateo, Calif.:
Morgan Kaufmann.

Bylander, T. C. (1988). A critique of qualitative simulation from a
consolidation point of view. IEEE Transactions on Systems, Man and
Cybernetics, 18(2), 252-268.

Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning:
high-level building blocks for expert system design. IEEE Expert, 1(3),
23-30.

Chandrasekaran, B. (1989). Task structures, knowledge acquisition and
learning. Machine Learning, 4, 339-345.

Chandrasekaran, B. and Narayanan, N. H. (1990). Integrating imagery
and visual representations. Proc. Cognitive Science Society Annual
Conference, MIT, Cambridge, Mass.

Chandrasekaran, B., Smith. J. W. Jr and Sticklen, J. (1989). "Deep"
models and their relation to diagnosis. Artificial Intelligence in
Medicine, I. 29-40.

Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence
27(3), 289-350.

Dixon, J. R., Simmons, M. K. and Cohen, P. R. (1984). An architecture

Design Automation Conference, IEEE, 634-640.
Forbus, K. D. (1988). Qualitative physics: past, present and future. In

Exploring Artificial Intelligence. San Mateo, Calif.: Morgan Kauffman,
pp. 239-296.

Freeman, P. and Newell, A. (1971). A model for functional reasoning in

II

49

1

DESIGN PROBLEM SOLVING: A TASK ANALYSIS

design. Proceedings of the International Joint Conference on Artificial
Intelligence. London: The British Computer Society, pp. 621-633.

Friedland, P. (1979). Knowledge-based experimental design in molecular

genetics. Proceedings of the 6th International Joint Conference in
Artificial Intelligence, 1JCAL Tokyo, 285-287.

Goel, A. (1989). Integration of case-based reasoning and model-based
reasoning for adaptive design problem solving. Ph.D. dissertation,
Computer & Information Science, The Ohio State University.

Goel, A. and Chandrasekaran, B. (1989a). Functional representation of
designs and redesign problem solving. Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, Detroit, Mich.,
1388-1394.

Goel, A. and Chandrasekaran, B. (1989b). Use of device models in
adaptation of design cases. Proceedings of the Second DARPA Case-
Based Reasoning Workshop, Pensacola, 100-109.

Goel, V. and Pirolli, P. (1989). Motivating the notion of generic design
within information-processing theory: the design problem space. Al
Magazine, 10(1), 18-38.

Hammond. K. (1989). Case-Based Planning: Viewing Planning as a
Memory Task. Boston, Mass.: Academic Press.

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial
Intelligence, 26, 251-321.

Herman, D. J. (1992). DSPL++: A high-level language for building
design expert systems with flexible use of multiple methods (tentative
title). Ph.D dissertation, Computer & Information Science, The Ohio
State University.

Johnson, L. and Soloway, E. (1985). PROUST: knowlcdge-based
program under-standing. IEEE Transactions on Software Engineering,
11(3), 267-275.

Johnson. T., Chandrasekaran, B. and Smith, J. W. Jr (1989). Generic
tasks and Soar. Working Notes of the AAAI Spring Symposium on
Knowledge System Development Tools and Languages, Stanford,
Calif., 25-28.

Kelly, V. E. and Steinberg, L. 1. (1982). The CRITIER system:
analyzing digital circuits by propagating behaviors and specification.
Proceedings AAAI Conference, AAAI, 284-289.

Keuneke, A. (1989). Machine understanding of devices: causal explana-
tions of diagnostic conclusions. Ph.D. dissertation, Computer &
Information Science, The Ohio State University.

Maher, M. L., Zhao, F. and Gero, J. S. (1988). Creativity in humans and
computers. In J. S. Gero and T. Oksala (eds) Preprints Knowledge-
Based Design in Architecture. Helsinki University of Technology,
pp. 29-44.

Marcus, S., McDermott, J. and Wang, T. (1985). Knowledge acquisition

I

Iso2 _ _ _ _ _ _ _ _ _ _

* 50

S _

ml

B. CHANDRASEKARAN

for constructive systems. Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI, 637-639.

McDermott, J. (1988). A taxonomy of problem-solving methods. In S. i
Marcus (ed.) Automating Knowledge Acquisition for Expert Systems.
Boston: Kluwer, pp. 225-256.

Mittal, S., Dym, C. and Morjaria, M. (1986). PRIDE: an expert system
for the design of paper handling systems. IEEE Computer, 19(7),
102-114.

Mittal, S. and Frayman. F. (1989). Towards a generic model of
configuration tasks. Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Detroit, Mich, pp. 1395-1401. I

Narayanan, N. H. and Chandrasekaran, B. (1991). Reasoning visually
about spatial interactions. Proceedings of the 12th International Joint
Conference on Artificial Intelligence, Sydney, Australia. Mountain
View, CA: Morgan Kauffman. pp. 360-365.

Newell, A. (1980). Reasoning, problem solving and decision process: the
problem space as a fundamental category. In Attention and Performance,
VIII. Hillsdale, NJ: Lawrence Erlbaum, pp. 693-718. I

Punch, W. (1989). A diagnosis system using a task-integrated problem
solver architecture (TIPS), including causal reasoning. Ph.D. disserta-
tion, Computer & Information Science, The Ohio State University. I

Rich, C. (1981). A formal representation for plans in the Programmer's
Apprentice. Proceedings of the 7th International Joint Conference on
Artificial Intelligence, IJCAI, Vancouver, B.C., 1044-1052.

Rosenbloom, P. S., Laird, J. E. and Newell, A. (1987). SOAR: An
architecture for general intelligence. Artificial Intelligence, 33, 1-64.

Sacerdoti, E. D. (1975). A structure for plans and behavior. Technical
Report 109, AI Center, SRI, Menlo Park, Calif. I

Schank. R. (1982). Dynamic Memory: A Theory of Learning in
Computers and People. New York: Cambridge University Press.

Stallman. R. and Sussman, G. (1977). Forward reasoning and dependency- I
directed backtracking in a system for computer-aided circuit analysis.
Artificial Intelligence, 9, 135-196.

Steels. L. (1990). Components of expertise. Al Magazine, 11(2), 28-49.
Stefik, M. (1981). Planning with constraints. Artificial Intelligence, 16, I

111-140.
Steier, D. (1989). Automating algorithm design within an architecture for

general intelligence. Ph.D. dissertation, School of Computer Science, i
Carnegie Mellon University, CMU-CS-89-128.

Sticklen, J. (1987). MDX2: An integrated medical diagnosis system.
Ph.D. dissertation, Computer & Information Science, The Ohio State
' Iniversity.

Sussman, G. J. (1973). A computational model for skill acquisition.
Ph.D. dissertation, MIT, AI-TR 197. [Also in book, same title,
Elsevier, 1975.1

*1

511

rsw -. -.- -

B. Chandrasekaran, ToWd R. Johnson and Jack W. Smith

Task-Structure Analysis for
Knowledge Modeling

n recent years there has been increasing interest in describing complicated infor-
mation processing systems in terms of the knowledge they have, rather than by
the details of their implementation. This requires a means of modeling the

knowledge in a system. Several different approaches to knowledge modeling have been
developed by researchers working in Artificial Intelligence (Al). Most of these approaches
share the view that knowledge must be modeled with respect to a goal or task. In this arti-
cle, we outline our modeling approach in terms of the notion of a task-structure, which
recursively links a task to alternative methods and to their subtasks. Our emphasis is on
the notion of modeling domain knowledge using tasks and methods as mediating concepts.
We begin by tracing the development of a number of different knowledge-modeling ap-
proaches. These approaches share many features, but their differences make it difficult to
compare systems that have been modeled using different approaches. We present these
approaches and describe their similarities and differences. We then give a detailed descrip-
tion, based on the task structure, of our knowledge-modeling approach and illustrate it with
task structures for diagnosis and design. Finally, we show how the task structure can be
used to compare and unify the other approaches. a0 @0 * 4 0 0 0 * 0 0• • *

Knowledge-Based Systems: KBSs are designed with some task cation"), or they could be thought
What are they? or class of tasks in mind. Similarly, of as goals as well (the GT called
A knowledge-based system (KBS) they are designed to be operational "hypothesis assessment" had the
has explicit representations of across some range of domains, goal to assess hypotheses). In this
knowledge as well as inference pro- Thus, a clear understanding of the article, we use the word "task" as
cesses that operate on these repre- relationship between tasks, knowl- synonymous with types of problem-
sentations to achieve a goal. An in- edge and inferences required to solving goals: for example, we call
ference process consists of a perform the task is needed before diagnosis a task, since we want to
number of inference steps, each knowledge in any domain can be talk abstractly about the family of
step creating additional knowledge. modeled, problems, all of which are charac-
The process of applying inference terized by achieving the goal of
steps is repeated until the informa- Background generating a causal explanation of
tion needed to fulfill the require- Tasks observed abnormal behavior. Spe-
ments of the problem-solving goal The word "task" has been used in cifically, we want to separate the
or task is generated. Typically, both somewhat different senses in the task from the method used to
domain knowledge and possible field, contributing to much con- achieve goals of this type.
inference steps have to be modeled fusion. For example. Wielinga et al.
and represented in some form. in [35] describe a task as a "fixed The Knowledge Level

fr. one sense, knowledge is of strategy" for achieving a goal, im- Newell's Knowledge Level (KL)
general utility-the same piece can plying that it is a term synonymous framework [271 is very useful for
be utilized in different contexts and with a method or a procedure spec- describing intelligent systems with-

Sproblems; so, unlike traditional ification. in our original work on out becoming bogged down in acci-
procedural approaches, knowledge generic tasks (GT) 16], there was a dental features of implementation
should not be tied to one task or conflation of the goal with the languages (see [20] in this issue for
goal. On the other hand, it is diffi- method: the GTs could be thought additional discussion and examples

Scult to know what knowledge to put of as components of a composite of the knowledge level). Much of
in a system without having an idea method (e.g.. the goal of diagnosis the discussion in the field has been
of the tasks the KBS will confront, is achieved by a method composed vitiated by too premature a com-
In spite of claims of generality, all of "data abstraction" and "classifi- mitment to a symbol-level repre-

52 SClNCR~er 12I/V.1 35. NO/0900M 6MMM

sentation (e.g.. whether the repre- knowledge level the goal of MYCIN condition-action rules by which a
sentation will be rules or frames, is to select a therapy. The knowl- system behaves. Simple condition-
and whether backward- or for- edge required to do this maps signs action statements, in which the con-
ward-chaining will be employed), and symptoms to therapies. At the ditions match the current situation
Newell proposed that problem- next level we can reapply the KL and the actions add to or modify
solving agents can be characterized and say that MYCIN's therapy goal that situation, are termed produc-
in terms of the knowledge and is accomplished by first identifying tion rules. However, this level of
goals that can be attributed to them, the bacterial infection present, then description does not indicate the
and the Principle of Rationality by selecting a therapy for that infec- real control structure of the system
means of which intelligent agents tion. Hence, we break the top goal, at the task level. For example, the
can be assumed to use knowledge therapy, into two subgoals, diagno- fact that RI [23] performs a linear
relevant to their goals. Thus, in dis- sis and selection. At this level we sequence of subtasks is not explic-
cussing a diagnostic system, can be more specific about the types itly encoded; the system designer
whether it is implemented as a rule- of knowledge required for the task. "encrypted," so to speak, this con-
based system or a connectionist net- Diagnosis requires knowledge- trol in the pattern-matching of
work, we can talk about the task (or mapping signs and symptoms to an OPS5, the production-rule system
goal) as diagnosis of a certain type, infection. Selection requires knowl- in which R1 is implemented.
and can identify the knowledge edge mapping infections and pa- Another early knowledge-
content of the system in two ways: tient data to a therapy. In such a modeling scheme was based on
as knowledge about the set of mal- way, we can continue to apply the frames. Frames were often pro-
functions, and knowledge that aids KL until the system is specified in posed to be at the "knowledge
in mapping from observations to sufficient detail to allow its imple- level," since they supposedly were
the malfunctions. Hence, at the mentation. In MYCIN, each of the used for representing objects in the
knowledge-modeling level, we re- subtasks is implemented in a back- domain and their relations, a
late the task to the types of knowl- ward-chaining rule-based system. "deeper" level of representation
edge needed to accomplish it. We The point, however, is that an accu- than production rules. The knowl-
can then make additional imple- rate KL description of MYCIN edge-level idea behind frames is
mentation commitments which will, hides implementation details of the that they capture stereotypical
in turn. give us additional con- system. knowledge; this idea, however, is
straints on the forms of knowledge. There are many ways to specify not sufficient for modeling control

The knowledge-level view does an information processing system knowledge at the task level. The
not include a specific account of without describing implementation problem is that frames and frame
how the problem will be solved (i.e.. details. Examples include the languages do not provide a task-
it does not indicate the representa- knowledge level, abstract algorithm level vocabulary for modeling con-
tions and inference methods uti- specifications and Marr's informa- trol knowledge. When frame lan-
lized to accomplish the task). How- tion processing level [22). The se- guages were used, control of a sys-
ever, the knowledge-level view can lection of an information process- tem was often described at a
be applied recursively: that is. some ing description depends largely on syntactic level: for example. in
commitment to an inference the system being described and the terms of which links to pursue for
method can be made fairly ab- purpose of the description. The KL inheritance.
stractly: then this too can be repre- is primarily designed for use in de- The problem was that during the
sented as knowledge at the knowl- scribing intelligent agents; hence it first decade of knowledge-based
edge level. This process can be describes an information process- systems research, the discussion was
repeated until the knowledge-level ing system as having goals, actions almost entirely in terms of the sym-
description includes some descrip- and bodies of knowledge. bol level: in the rule-based para-
tion of the strategies as well. Each digm all the problems were posed
commitment to a method requires Background Work In Knowledge as issues at the rule architecture
some commitment to how the prob- Modeling level. Very little discussion took
lem will be solved, but not as de- Some of the earliest work in knowl- place at the level of the relation be-
tailed a symbol-level commitment edge modeling was done as part of tween the task for which the system
as is normally done when a pro- the rule-based system approach. In was being designed and the kindsgramming language such as rules this approach, the agent's knowl- of knowledge needed. For exam-or frame languages is employed, edge was viewed mainly as directly ple, a major research issue for rule-

To see how the KL is used. con- available recognition knowledge based systems was the development
sider how it can be applied to de- (i.e.. knowledge that indicates ex- of an appropriate domain- and
scribe MYCIN. a KBS for selecting actly what to do in a situation). The task-independent ceuflt maolsutsi
therapies for bacterial infections of knowledge modeling scheme was stratwy that would let the system
the blood [331. At the highest simply to list, as knowledge, the choose which production rule to

c i .ai uu. ,.•: ,•,,,53 4

ri~

fire when multiple rules matched, contains diseases. More general hierarchy, and refinement was
When the knowledge is viewed at classes of diseases are located at the done during classification. The dif-
the appropriate level, however, we top of the hierarchy; more specific ference between the two ap-
can often see the existence of orga- diseases are located near the bot- proaches lies in the explicit identifi-
nizations of knowledge that bring tom. The method operates by first cation by Clancey of this combined
up only a small, highly relevant attempting to establish (i.e., con- inference structure as heuristic
body of knowledge without any firm to a certain level of confi- classification, whereas Chandrase-Sneed for conflict resolution. dence) the topmost category. If this karan et al. had broken this struc-

The first set of insights regard- can be established, it is then re- ture down into its components.
ing the analysis of knowledge sys- fined: its successors become cate- McDermott and associates
tems at one level removed from gory hypotheses for the system to started investigating the roles of
their implementations came from a consider next. Categories that can- knowledge in various methods for
number of sources. Gomez and not be established are not refined; several tasks [24]. Their goal was to
Chandrasekaran identified classifi- hence the hierarchy below these develop programs that could auto-
cation as a common element in di- categories does not need to be ex- matically acquire knowledge from a
agnosis [15], and Mittal and plored. The generic task descrip- domain expert. To do this they de-

Chandrasekaran added data ab- tion clarifies the control structure veloped role-Limiting methods for
straction as another common ele- and knowledge of a classification solving general tasks, such as the
ment [25]. This work led directly to system. Instead of describing the cover-and-differentiate method for
a knowledge-modeling scheme in system in terms of rules or frames, diagnosis and the propose-and-
the form of generic task (GT) lan- we can describe the system in terms revise method for design. Role-
guages [6]. A generic task identifies of categories, category evaluation limiting methods are "methods that
a task of general utility (such as and refinement. The knowledge strongly guide knowledge collec-
classification), a method for doing required to use hierarchical classifi- tion and encoding [241." They pro-
the task and the kinds of knowledge cation is made explicit: knowledge ceeded to specify the roles various
needed by the method. The lan- must be available to test and refine types of knowledge play in the op-
guage is made of primitives that categories. The control of the sys- eration of each method. The major
allow the required knowledge to be tem is explicitly described at a task difference between the role-limit-
directly described for any domain level--categories are evaluated and ing method approach and most of
in which the task can be performed. then (if necessary) refined-rather the other approaches discussed
Chandrasekaran and his colleagues than at the implementation or sym- here is the requirement that a role-
identified a number of such generic bol level, limiting method be completely
tasks (6]. They also showed by ex- Somewhat near this time, Clan- specified (i.e., that all tasks and sub-
ample how complex tasks such as cey had identified "heuristic classi- tasks be prespecified down to the
diagnosis could be decomposed fication" [!1] as a somewhat ab- level of primitive operations).
into such generic tasks [9]. stract pattern of inference implicit Musen investigated ways to

in MYCIN (see Figure 1). Heuristic model classes of planning problems
Hierarchical classification [5, 9] classification itself was presented as and the required domain knowl-

was the first generic task to be iden- independent of the rule language edge [26]. He advocated the devel-
tified and will serve as a good ex- in which MYCIN was written so opment of a task model followed by
ample of the task-based approach that this higher-level inference pat- the use of the model to acquire
that we and other researchers have tern could be seen independent of domain facts. His system, Protege,
been developing. The task of hier- the rule-level representation. Clan- provides a language for modeling
archical classification is the identifi- cey's approach is similar to the GT classes of planning problems based
cation of an object based on a set of approach, having identified a task on skeletal plan refinement. Once
features. For example, diagnosis (classification), a method (heuristic modeled, Proteg* created a knowl-
can be viewed as classification in classification) and the kinds of edge editor domain which experts
which the input is a set of manifes- knowledge needed to use the could interact with to build KBSs
tations and the output is the dis- method. In fact, the three infer- that solved problems in the plan-
order associated with these mani- ences in heuristic classification (see ning class.

Sfestations. The name of the generic Figure I) can be interpreted as Gruber and Cohen investigated
task, hierarchical classification, al- three subtasks. MDX [9], the ge- task models as mediating represen-
ludes to the method identified to neric-task diagnosis system, also tations of knowledge acquisition for
solve the task. The method, called incorporated the same task decom- a diagnostic task [16]. They con-
Establish-Refine, assumes the exis- position. Data abstraction was done structed MU, a task-specific archi-
tence of a classification hierarchy of using an intelligent database; heu- tecture for building application
output categories. In the case of ristic match was done by establish- programs that do prospective diag-
medical diagnosis, the hierarchy ing categories in the classification nosis. A companion system, called

54 •epe-.• I,5,.,,.,5. ,f-- U

i-L 2.. . - -.-......-.

Heuristlc Match methods and how complex generic
tasks and simple generic tasks are

Data Abstractions Now Solution Abutractions related,
2. The great variety of knowledge-

Data Abstraction Robwwmet modeling terms that have been pro-
posed without any simple way to
map between them,

Data Solutions 3. Avoiding overdetermination
and rigidity in the ways various
tasks are performed in the variousF;,jur& 1. Infernce structure for additional subtasks, such as evaluat- proposals. That is, we need to showheuristic classification. Aclaptedl frmmfill. ing and refining hypotheses. The how these various task-level ideas,

task structure notion of Steels does at various grain sizes, can be corn-
not explicitly represent alternate bined flexibly.

ASK for "Acquisition of Strategic methods for each of the tasks; in- To overcome these problems, we I
Knowledge." interacts with an ex- stead it is a tree of tasks and sub- To
pert to acquire knowledge for MU- tasks, with the method chosen im- develop the notions of a task,
based systems. Because ASK is writ- plicit in the analysis. Thus a given oatask sucture. The tasketru|• of a task structure. The task struc-
ten specifically for MU, it knows task structure implicitly assumes ture is a uniform task-level analysis iabout the strategy and types of the choice of some method for a framework for describing systems.
knowledge needed for the task; given task. Therefore, it is a good By viewing the various task-levels
hence ASK can interact with an tool for the description of how a Byrviewin teros task
expert at the task level rather than particular knowledge system solves approaches in terms of the taskat a lower implementational level, the task for which it is intended.

the approaches and also unravelIn Europe, Wielinga and The notion of the task structure we the current confusions.Breuker proposed a set of primitive will develop later in this article ex-
terms in which to model the tasks plicitly represents the methods forthat expert systems perform and. in each task, which then provides a The TaSk StruCture
turn. the use of these terms as a framework for the dynamic selec- The Task Structure is the tree of
modeling language to capture the tion of methods at run time. tasks, methods and subtasks ap- I
knowledge in the domain [I]. Their
methodology., called KADS, advo- These approaches share two plied recursively until tasks are
c at important features. First, they reached that are in some sense per-cartes knowegm odeligowere identify tasks at various levels of formed directly using availablepert knowledge modeling where idniytssa!aiu ee knweg.Fgr rpial

the knowledge modeler begins with abstraction above the implementa- knowledge. Figure 2 graphically
an expert verbal protocol, models tion language level. Second, they represents part of the task structure
this with primitive terms, then identify types of knowledge and for diagnosis. A task (as we defined
builds highe prilivel ofta is on strategies closely associated with earlier) is a problem type, such asbuilds higher levels Thisis such tasks. Thiis s the key point in diagnosis. Tasks are represented
top of the primitive model. This s knowledge modeling: once such graphically using circles. A method
ogy behind GTs in which the terms are identified, we have a lan- is a way of accomplishing a task.
kogybehindge mo ing whh ahe n guage in which to model the knowl- These are represented graphically
knowledgeedge in the domain and the strate- using rectangles. In the figure.
a top-down fashion by matching gies to solve the problem. The Baysian Expanatin, Abduct/re As-known generic tasks to the task T e andsu vE rnan, Abductim ar-
being modeled, terms in the vocabulary can be use mb/y and Cidemnt-ie aferendiao are-More recently, Steels has pro- to encode knowledge, mediate identified as methods for diagnos-
posed work along lines that build knowledge acquisition [4) and pro- ing. All of these methods can beSvide suitable explanations [10). classified as abduciive methods,'
on the notion of tasks and task hence they appear as a subtype of Iistructures (341. In his formulation, N4O ftr uniNorM Fr O r Abduction Met/hds. In general, a taskthe task structure is intended to cnb
specify the task/subtask decompose- In spite of the last decade having can be accomplished using any one
tion of a complex task such as diag- seen a clear consensus in favor of of several alternative methods; thuson of.he a cmplextask suchogsition- task-level analyses and the advan- in the task structure we can explic-
that the subtasks of a task depend tages they offer for knowledge idy identify alternative methods forthn the method used for the task. modeling and acquisition, con- eachtask. A method can set up sub-
Fort example, a task such as diagno- fusion remains regarding the fol- tasks, which themselves can be ac-

sis might be done using a classifica- lowing:
tion method. Classification specifies I. Distinctions between tasks and effect to cauoe. or u

m ~m. -- -- ,., ,,,,- , , -, •,,, -

"S~• .. -. •

I

complished by various methods. Structure tor Design and Diagno. MMthOds and Subtasis
For example in the Diagnosis task sis" discusses the task structures for Methods are ways of accomplishing
structure Abductive Assembly has design and diagnosis in detail, tasks and may be of many types:
been decomposed into two sub- they may be computational, or "sit-
tasks: Generale Plausible Hypotheses uated," (i.e., involve extracting in-
and Select inataheses. Tasks are specified as transform formation from the surrounding

Knowledge" in a task structure Tasns iniialprole m speied wh cra ing physical world). For example, the
comes in four forms. First. each iatu problem state with certain task of predicting behavior oftaskC must be accomplished using additionaltfeatures. For examte in device may be solved by a computa-
knowledge that maps the input of additional the For state tional method that performs a sim-
the task to the output. Second, he diagnostic task the initials ulation. or it may be solved by ma-
knowledge must indicate when an d the g state includes infor nipulating a physical model of the
applicable subtask is needed. tion about the causes of the mal- device and seeing what happens.
Third, when a method consists of functions. It is important to distin- Within the class of computational
subtasks, knowledge is needed to guish between a task and a task methods, a method may be couched
sequence the subtasks. Fourth, as executing a precomplled algo-
when a task can be accomplished instance. A task instance is a partic- rtmseacuting a praeompiled asgo-

suh rithm, search in a state space, asa
usin two or more methods, knowl- ular problem/goal state pair, such connectionist network and so on.
edgeuisi n eeded to selectra method the diagnosis of a particular pa- Our uniform framework foredge is needed to select a methode tient with specific symptoms. In e ni fo

The following subsections de- contrast, a task specifies a family of describing methods is based onscribe the task structure in detail. task instances of a certain type. This the problem-space computationalThe section "Examples of Task model' [281 and was adopted as a
"Eaplsfamily can be defined at variousreutowrknTIS[1.aa-
levels of generality. For example, result of work on TIPS [31]. an ar-

FSur,, I Part of the task structure the diagnosis of a patient with spe- iecure for dynamnicay integrad-
for Dagnosis. carct reoresent task; cific symptoms is a task instance of ing generic tasks, and work doneSrmngleseesent ethodSe sc- the medical diagnosis task, which is integrating generic tasks usingdoin "an gof fto Strcturfo itself a subclass of the general diag- problem spaces in the Soar archi-j ,Design and Diagnosis' for a d255iscussitsel alucaso h eea ig ecture [18]. We define a method toof the role of simulation. nosis task. betur 8. dis th odntobe a set of subtasks that can be used

to transform the initial state of a

task to the goal state. The method
may contain additional information
about ordering the subtasks. called
search-control knowledge (211], or this

Sknowledge can be generated at
c run time.
w While the task structure allows

the specification of methods of dif-
ferent types, those that are mod-Slatesian Asbmldy Dicte eled as problem-space search have a
special role for two reasons. For
one thing. one way to understand
knowledge systems as a distinct type
of information technology is to note
that the role of explicit knowledge
in them is to set up alternatives,
evaluate and refine them. In
MYCIN. for example. the knowl-
edge in its knowledge base enables
it to set up and evaluate various
bacterial infection hypotheses. Sec-
ond, the architecture that inte-
grates the different methods itself
can be viewed as operating in a

'For an exampl o a direct app of tbe
___problem-space compw mnoZl we ("Io

in dt isWue.

56

Svjii

.4

search space of methods and mak- application to a state. For the hier- the search space of the task. begin-
ing selections in it. Third, we will archical classification method we ning with the initial state, S1. con-
see that the notion of subtasks are describing, the operations eual- taining manifestations indicative of
emerges naturally in the frame- uate and reJine should be considered a viral infection (labeled Data) and
work of search in problem spaces. whenever their preconditions are the high-level hypothesis liver dis-

To clarify this, let us consider met. ease. The only operator applicable
how to represent the Establish- The initial and goal states and to this state is evaluate &iwr disease. I
Refine method for hierarchical clas- the subtasks define a search space Application of this operation re-

sification (see earlier subsection or problem space. Figure 3 illus-
"-Background Work in Knowledge trates the search space that results
Modeling-) using the framework when the method described is ap- FSur& I Pat Of thi iM sVc forl
described. Hierarchical classifica- plied to a liver diagnosis problem. as pi to inWeN aim... Tme ama for
lion is used in many diagnosis sys- The search space is the set of states t uamme- armoc of a *Wl"

tems as a way of quickly focusing on reachable from the initial state by t mM. d iln tm we
possible malfunctions. The initial applying the operators for the u e In laI4 4It in O am un-

state of the classification task is a set method. The figure shows part of SalY.
of data (e.g.. manifestations in a I
diagnosis task) and an initial high- 1
level hypothesis (e.g.. liver disease). Dao
The goal state is one containing liv dIase
plausible malfunction hypotheses Sl
(i.e.. the most detailed hypotheses 1
consistent with the data). The
method works by first considering a
high-level malfunction category., Nvovie* WwE dissesI
such as liver disease, to determine if
the malfunction appears likely Doat
given the data at hand. If it appears

i

likely, then the malfunction is re- S2
fined to more specific diseases.
hepatitis and cancer, for example.
The more specific malfunctions are Rothm Iver cissese
then evaluated against the data and
any that appear likely are refined.Doi
This process continues until no ivo, agocancer¢
more malfunctions can be refined. S3 infion

We can specify this method using
two subtasks:

evaluate hypote sls v. to wOon
ref~ie hAypotJheaaDteDa

The first. eviluate, takes some hy- Ilver diseas h'din
pothesis (such as a malfunction infecion I4 "" cance
hypothesis) and assigns a likelihood
based on the current case data. A
precondition for applying evaluate
to a hypothesis is that the hypothe- Rltw inlion
sis must not have already been eval-
uated. The second subtask. refine.,a atakes a hypothesis as input and pro- :iiW m ~ d
duces the refinements for that hy- $51 boosot"" do"

pothesis. Refine has two precondi- bectodal
tions: the hypothesis must be likely
and must not have already been

L refined.
We must also specify when an

operation should he considered for

-s

suits in a new state. S2. in which the heuristics apply. available knowledge is in a form
liver disease is rated likely (in the The indepndent specification of that maps the input of the task to
figure this is noted by setting the Th the output. For example, directly
hypothesis in bold face). Only one search control knowledge and sub- available knowledge for refine is of
operator is applicable to S2. refine tasks lead to two of the primary the form:
liver di•ease, resulting in S3 which advantages of the problem-space If task is refine hypothesis then re-
contains the refinements of liver dis- approach to specifying methods: finements are rl, r2. r3 ...
ease: cancer and infection. At S3 two 1. In the task structure we are not For instance:
operators are applicable: evaluate forced to specify a particular sub- If task is refine liver disease then
cancer and evaluate infection; hence task sequence. We can specify the refinements are infection and can-
the tree branches to show both pos- search-control knowledge that is cer.
sibilities: evaluate cancer results in general to all task instances for a

S-r in which cancer is determined to method and defer other decisions No complex computation is re-
be unlikely and evaluate infection about subtask sequencing to system quired to use this knowledge to ac-
results in S4" in which infection is designers or run-time computation. complish the refine task-the
rated likely. By doing this, we ensure that the knowledge is in a form directly

In the PSCM framework, prob- method can be applied to as wide a applicable to the task. If knowledge
lems are solved by searching range of task instances as possible. is not directly available, it must be
through a problem space for a path In contrast, early GT work often derived from existing knowledge or
from the initial state to the goal overconstrained the sequencing of acquired from the external envi-
state. Problem-space search is done subtasks, limiting the use of each ronment. In either case, a method
by enumerating subtasks applicable method to a narrow range of prob- must be used to acquire knowledge
to the current state (which at the lems. of the desired form. For example,
start of problem-solving is the ini- 2. Search control knowledge en- refine can be accomplished using a
tial stdte of the task instance), se- sures a dynamic or situated system. method that knows about different
lecting from these a single subtask Each bit of search control knowl- refinement dimensions, such as re-
and then applying that operation to edge is sensitive to the subtasks and finements along etiologic and sub-
the current state. The resulting the current state, hence the precise part relations. This method can
state then becomes the new current sequence of subtasks is determined evaluate various dimensions and
state and the whole process of oper- dynamically at rtun time. then select the dimension appropri-
ation selection and application is ate for the task instance. For exam-
repeated until the goal state is MethlOd SealCtlon fnowleOdge pIe, liver disease could be refined
reached. Functionally. there are four types using etiology to infection and cancer

Search-control knowledge guides of knowledge in a task structure. or using anatomic structure to cen-
the search through the problem We discussed three of these (search tral-area and portal area. The most
space. For exampl:. :in hierarchical control. subtask application and appropriate dimension to use de-
classification the agent ,night apply subtask proposal knowledge) in the pends on the task instance (i.e.. the
a heuristic that it is better to evalu- previous subsection, since they are kinds of manifestations available).
ate hypotheses with higher likeli- related to the description of a Whenever any of the four types
hoo)ds than those with low likeli- method. The remaining type. of knowledge is not directly avail-
Styse. inowle, g ntoa
hcids, or it might decide that the method selection knowledge, is as- able, subeasks to acquire the knowu -decision about which evaluate oper- sociated with a task, or a task./ edge can be created and set up as

ator to apply is not important, method combination. For example, new problems. These subtasks are
hence either operator can be se- the task structure for Diagnosis in- viewed like any other task: they
lected. In the task structure, we cludes multiple methods for evalu- have an initial state and a goal state

specify the minimum amount of ating a hypothesis. When a system and can be accomplished by the
search knowledge needed for each has two or more of these methods, application of a method consistingSmethod. No search control knowl- method selection knowledge must of a set of operations. Hence, al-
edge is specified for the hierarchi- be present to determine the best though a method requires certain
cal classification method because method to take for the task instance kinds of kn, -let'ge to be applied to

q any such knowledge would unduly being solved, a task. this knowledge does not
constrain the method. For example, have to be known before problem-
if either of the heuristics mentioned Diret vs. Derived Knowledge solving can begin, but can be dv-
previously were included in the The four types of knowledge in a namically acquired or derived at
search-control knowledge for the task structure can be available in run-time.
method, it would limit the applica- two forms: it can be directly avail- This idea is also closely related to

tion of the method to those do- able for the task or it can be corn- the distinction between "deep" and
mains and task instances in which puted by another method. Directly "shallow" knowledge. sometimes

58

4MMv'.I1N. '~nn YSM

r C)

called "deep- and "compiled" of the evaluation subtask. can be tions of design and diagnosis illus-
knowledge. There is also often an- generated (see the next section for trate the main points about specify-
other distinction between model- information on simulation). Thus ing the task structure.
based and rule-based reasoning, the structural model is a deep Part of the task structure for de-
motdels being more general knowl- model for the methods of classifica- sign is shown in Figure 4. In the
edge describing the principles of tion and hypothesis evaluation that task structure diagrams. circles rep-
the domain, while rules refer to rel- are generally used in the diagnostic resent tasks and rectangles repre-
ativelv ad hoc associations between task. sent methods. The top task for the
evidence and hypotheses. In [81, we The approach to defining the design task structure is, of course,
provide an analysis of these terms notion of depth of knowledge in design. The design task can be
and develop a notion of -depth" of the framework of the task/ solved using a family of methods
knowledge that is important for methods/knowledge triple general- called propose-critiqu-modify (PCM)
knowledge modeling. We give a izes the intuitive notion that has [7]. These methods have the sub-
brief description of this idea. equated structural models with tasks of proposing partial or com-

Let K(T, V) denote the knowl- deep models. Under our definition plete design solutions, critiquing
edge needed by method AI in per- depth is a relative notion (i.e.. it is the proposals by identifying causes
forming the task T. If a knowledge relative to a method for a task), and of failure, if any, and modifying
system performing T using AI has there is no notion of characterizing proposals to satisfy design goals;
the knowledge K(T.M) directly knowledge as deep or shallow in hence the three subtasks shown for
available in its knowledge base, let some absolute way. PCM: propose, critique and mod-

us say the knowledge system has the ify. These subtasks can be comn-
knowledge in a compiled form. How- Examples of Task S•ructure bined in fairly complex ways, but
ever. suppose some knowledge ele- for Design and DlagnoSls the following method is onef
nment k in K(T.Mb is missing in the The specification of a task structure straightforward way in which a
knowledge base, and the task of consists of three parts: PCM method can organize and
generating this knowledge is set up i. an input-output relation that combine the subtasks. I
as a suhtask. If there exists some combine
other body of knowledge in the denotes the task; Step I. Given design goal. propose
knowledge base. say K', so that by 2. the identification of methods solution. If no proposal, exit with
adlditional problen-solving using K' and their subtasks (as in Figure 2); failure.we can generate the knowledge ele-and Step 2. Verify proposal. If verified.ment k. we can sate that K' is deep 3. knowledge to propose subtasks, exit with success.

relative to k. implement subtasks. sequence sub- Step 3. If unsuccessful, critique

I n the reline example we saw that tasks (search-control knowledge) proposal to identify sources of fail-
analtomic structure is one of the di- and select methods. ure. If no useful criticism available,
mensions along which refinement The task-structure diagrams do not exit with failure.

tould be done. So-called model- list the kinds of knowledge or the Step 4. Modify proposal; return to 2. I
based reasoning is an approach in input-output relations of the tasks;
which structural descriptions of the this is. however, an important part V 4 P ote " structure
device under diagnosis are used to of the specification of the task for design 17. crcles represent tasks;
generate refinement hypotheses. structure. The following descrip- rectangVe represent methods.
From this device model, we can
generate, list of malfunctions (e.g.,
one malfunction category can be
assigned to the failure of each of
the functions of each component;
moreover, malfunction categories
can correspond to errors in connec- !
tions between components). Themal

same structural model can be used
to generate knowledge needed for
the evaluation subtask in Figure 2. WCrifiue ModifyI
The structural model can be simu-
lated for each malfunction, and
information about the relation

between malfunctions and obiser- Decmpellon Caa-bee
vations, which is the type of
knowledge needed for the methods -__

60N WIRm 10"l e~ l l ,.,,,,. o,,, V.ON ;:, 5,,9

T

There can be numerous variants on manifestation-. they explain. This manifestations. Hence, by describ-
the way the methods in this class method works by first generating ing the inpuuoutput of the subtasks
work. For example, a solution can plausible hypotheses to explain of abductive assembly we also spec-
be proposed for only a part of the parts of the data and then using ify the knowledge required to use
design problem, a part deemed to these hypotheses to assemble a the method. Simulation can be used
be crucial. This solution can then be complete explanation of the data. to evaluate a hypothesis because theI critiqued and modified. This par- Parsimonious covering works by simulation can reveal whether the
tial solution can generate additional stepping through each manifesta- hypothesis is possible given the data
constraints,- leading to further de- tion. updating the current set of about the device. Causal refine-
sign commitments. Thus, subtasks parsimonious explanations as each ments of a category can be deter-I can be scheduled in a fairly com- manifestation is considered. Two mined by simulating to determine
plex way. with subgoals from dif- subtasks for abluctive assembly are the possible outcomes of a set of
ferent methods alternating. One shown in the diagram, generate- inputs to a device. Simulation plays
could generate all such variations plausible-hypodhe.es and select-hvpothe- an important role in many task
and identify them all as distinct ses. These tasks can be done using structures because it is a fairly gen-
methods, but both the need for de- many kinds of methods. Since eral method for generating knowl-
scriptive parsimony and the sheer Bayesian and classification methods edge based on the structure of a
numerousness of the methods that have typcally been used to gener- device. We did not show the simula-
would result argue against doing ate plausible hypotheses, these are tion method in the design task
that. shown in the task structure. structure, but there too it can play

Each of the PCM subtasks can be The task structure for diagnosis an important role, especially for
achieved using various methods. also shows that simulation can be critiquing designs.
Three such families of methods are used to implement many subtasks. These task s~ructures are based

shown for the proposal task (see By simulation we mean structure- on the methods and subtasks im-
Figure 4): decomposition, case- to-behavior simulation, that is, de- plicit in many expert systems that
based and constraint satisfaction. In termining how some device will perform the tasks. Neither of the
decomposition methods, domain behave under changes to its struc- task structures is meant to be com-
knowledge is used to map subsets of ture by simulating its behavior plete; both, however, capture a
design specifications into a set of under those conditions. We have wide range of the methods useful
smaller design problems. The use earlier discussed the role of simula- for achieving the respective tasks.
of design plans is a special case of tion for accomplishing subtasks (see As we discover additional methods,

Sthe decomposition method. Case- previous subsection "Direct vs. De- these can be added to the structure.
based methods are those retrieving rived Knowledge"). Some methods (such as depth-first
from memory cases with solutions The knowledge required to use search) are so general they can be
to design problems similar or close abductive assembly consists of con- used to solve any problem. These
to the current problem. Constraint- trol knowledge for sequencing sub- methods are not listed in the task
satisfaction methods use a variety of tasks as well as the knowledge re- structure since they would appear
quantitative and qualitative optimi- quired to accomplish the subtasks. everywhere, cluttering the dia-
zation techniques. Control knowledge is specific to an gram.I Part of the task structure for di- application or domain, but the The task structure is meant to be
agnosis is shown in Figure 2. The knowledge for accomplishing sub- an analytical tool. We do not mean
diagnosis task can be viewed as an tasks can be defined using the to imply that the implementation of
abductive task, the construction of a input/output specifications of the a system must have a one-to-one

I best explanation (one or more dis- subtasks. Generate-plausible-hypohe- correspondence to the task struc-
orders) to explain a set of data ses takes as input one or more mani- ture, but that a system that per-
(manifestations). The task structure festations and outputs one or more forms diagnosis or design can be
shows three typical subclasses of disorders that could be used to ex- viewed as using some of the methods
abductive methods: Bayesian, ab- plain those manifestations. Select- and subtasks. In particular, the task
ductive assembly 1191 and parsimo- hypothesis takes as input the set of structure does not fix the order of
nious covering [301. Bayesian meth- manifestations, the set of disorders subtasks or dictate that a single
(ods require knowledge of prior currently being used to explain method must be used to achieve
probabilities of disorders and con- manifestations, and the set of dis- each task. It is also not meant to
ditional probabilities between dis- orders that could be used to explain correspond to a procedure-call hi-r orders and manifestations. They one or more additional manifesta- erarchy, although that is one way to
u tse this knowledge to estimate pos- tions (i.e., the output of generate- directly implement a task structure.
terior probabilities of disorders. pwib,-h).otheses) The output of The task structure simply provides
"Abductive assembly requires selct-hypodwuis is the disorder it has a vocabulary to use in describingI knowledge of disorders and the determined to use to explain the how systems work. The systems

60

being described might be based on bilities to generate plausible hy- present. By describing RedSoar at

neural networks, production rules, potheses and a scoring function this level, a comparison can be
frames. or a task-specific language; based on explanatory coverage and made between it and other abduc-
this is unimportant for the use and plausibility ratings to select a hy- tive assembly systems by comparing
construction of the task structure. pothesis. As shown in the figure, the methods and knowledge used

To further emphasize the impor- RedSoar also uses two additional to generate and select hypotheses.

tance and role of the task structure subtasks, rule-out and conifirm hVOMth- I
for describing systems, let us con- eses. These are domain-specific sub-
sider three descriptions of Red- tasks. The first allows the system to i qrmS Redsar descrlbed at thmree
Soar, a complex abductive system quickly rule out clearly absent anti- Nr1s: a) the task stuCture. b) the

prwelsPacO level Ca cnpttoa
that interprets immunohematologic bodies. The second lets the system gebeWsce wno ct rules Vine

tests in order to identify antibodies focus on antibodies that are likely symbol level).
present in a patient's blood [171. In
describing a complex knowledgeI
svstem such as RedSoar, we can use

three levels: 1) the task structure; 2)
a computational level (such as prob-
lem spaces); and 3) a symbol level.
Figure 5 shows each of these levels
for RedSoar. RedSoar uses abduc-
tire assembly of antibody hypothe- (a) Abducthe
ses to construct a best explanation Assembly
of the test data. In the task, the test
data are the manifestations: anti-
bodies are the "disorders" or expla- eGenrate
nations. RedSoar is directly imple- H Hypotheses P potheses
mented in Soar's production-rule

language and can be described by
listing all the rules in the knowledge !
base. such as those in Figure 3c. Problem Space Idengfy
About 1.000 of these rules consti- Opeerter: Make-absba.t-hypoiesee

tute the symbol-level view of Red-_Rle-o•t
Soar. However. this description De.mmoi-Inel-rsults
fails to capture the task-level con- .11- ty
trol and knowledge in the system. (b) Plae• Cover
To do this. RedSoar can be de- Resolve-isdfwdency
scribed at a computational level by Re
listing the problem spaces defined MWOW-,,, oun,

by the Soar production rules, as in Mwici-mincnsietendes
Figure 5b. That is. we can abstract
away from the symbol-level pro- ; Propose rule-out
duction rules to focus on the prob- (sp identify*propose*operator*rule-out
lem spaces, their initial and desired (goal <g> 'problem,-space <p> ^state <s>) 1
states and their operators. This (problem-space <p> ^name identify)

level of description is much closer (state <s> -object <Miodel>)
(object <model> -isa model "master-panel-read yes

to the task level, but would still con- -^antibody-list -,rule-out-performed)
tain too many details present as ar-
tifacts of the implementation (e.g., (goal <g> ^operator <o>)
extra operators that must be used (c) (operator <o> name rule-out))

for low-level manipulation of rep- oRefine s better than rule-out))

resentations). At the task-structure (sp identify*compare*operator*refine*rule-out
level (see Figure 3a). we can simply (goal <g> ^problem-space <p> ^state <a>
describe the system as using abduc- ^o1e rator <op> + (<> <od > <o2>

tive assembly and then point out (€prrator o.e ^name refine) 1
how it generates and selects hy. (operator <o2> ^name rule-out)

potheses: i.e., the methods and
knowledge that it uses. RedSoar (goal <Vg> ^perator <0l> > <o2>))
uses conditional and a priati proba-

p ~ ~ ~ ~ w 61 •...•-. .-

I
Knowledge Modeling and Ow longer have the normative proper- attractive method. Thus we see that
TaSk StructUre ties associated with the original al- in domains and tasks of impor-
The task structure described in the gorithm. The general algorithms tance, the domain knowledge tends
previous section facilitates knowl- also do not always make contact to evohle over time so that methods
edge modeling in several ways. with the form in which knowledge with good computational proper-
First. it associates tasks with meth- is actually available in various real- ties can be supported.
ods that accomplish them and the world domains. Thus. the Bayesian The fact that we do not start with
knowledge required to use the framework may be fine for a do- a uniform normative algorithm
methods. The multiple levels of the main in which the needed prior and does not mean we cannot be precise
task structure show how knowledge conditional probabilities (or good about the behavior of systems built
can be decomposed into bodies of approximations to them) are avail- in the task-structure framework.
knowledge that are associated with able, but in other domains in which Bylander [3] and Goel [14] are ex-
specific tasks. The task structure the domain knowledge takes other amples of analyses in which the role

Salso highlights the generality and forms, there is often a need for of specific types of knowledge in
specificity of the knowledge needed translating from these forms to the producing good computational
for a problem-solving method. probabilistic forms in which knowl- properties can be studied within the
That is. it allows methods to be edge is needed. general framework of the task-
compared based on the required The task structure view, on the structure view. For example, Goel
knowledge. Hence, we can see how other hand, views the solution of et al. show why classification is an
some methods require little domain complex problems as arising from attractive method, if knowledge in
knowledge (such as depth-first the interaction of many local meth- the form of classification hierar-
search, which only requires knowl- ods for local tasks. In any domain chies is available, and Bylander
edge to recognize a goal state), having a record of successful et al. show how knowledge about
while others require considerable human problem-solving, the the existence of certain types of
domain knowledge (such as hier- knowledge in the domain helps to causal links (and nonexistence of
archical classification, which needs decompose the task into manage- other types) makes the abductive
a domain-specific hierarchy of cate- able chunks, so each of the prob- assembly method tractable.
gories). lems can be solved to the degree of Fourth, the task structure em-

Second, since methods are char- precision and accuracy needed for phasizes that different kinds of
acterized bv the knowledge they the domain. It then becomes the methods can be combined: quanti-
require, domains can be modeled task of the Al theorist to develop tative and qualitative knowledge,

" by tools appropriate for the knowl- vocabularies of generic tasks, meth- heuristic and algorithmic knowl-
. edge that is available in the domain. ods and knowledge. Thus the at- edge can be appropriately com-

High-level tools based on this con- tention is shifted from the search bined for the accomplishment of a
cept. such as CSRL [5], DSPL [2], for uniform algorithms to model- task. For example, if a subtask can

j MUM [161, and MOLE (131, illus- ing knowledge and methods by be achieved using a known tech-
trate how this approach facilitates which tasks are decomposed and nique, for instance by solving a set
knowledge modeling, knowledge subtasks are accomplished, of differential equations. that
acquisition, explanation, and learn- We can also see how such task method can be used instead of
ing. structures evolve in real-world more traditional Al methods. Since

Third. the task structure view domains. If classification is a gener- the method that set up this subtask
should be contrasted with what one ally effective method for the gen- is concerned with the solution.
might call a "uniform normative erate-hypotheses subtask of diag- rather than how it was determined,
algorithm" view of how to solve nosis, then over time, the the original task can be imple-
complex problems such as diagno- problem-solving community devel- mented using a different kind of
sis or design. For example, there ops the knowledge needed to apply method or even a different compu-
have been proposals for a general it. Thus the medical community has tational architecture.
algorithm for diagnosis: "diagnosis devoted hundreds of years to the Fifth, the generation of new
from first principles" (32], and development of disease taxono- knowledge can itself be viewed as a
Bayesian networks [291 are two ex- mies, which is the form in which the reasoning task. Hence during
amples. The general algorithms, classification method needs knowl- knowledge modeling appropriate
while guaranteeing an optimal so- edge. The knowledge compilation questions can identify sources of
lution within their respective techniques (see subsection "Deep deep knowledge for various meth-
"frameworks, are typically intracta- vs. Derived Knowledge") are also a ods in the task structure.
ble. In these cases the engineering means by which knowledge in a less Sixth, the task structure outlined
of systems to solve the tasks is done direct form is converted into can be used to understand the dif-
hb various forms of heuristic ap- knowledge in a form that is more ferent task-level knowledge-model-
proximations. which of course no directly usable by a computationally ing schemes that have been pro-

62

posed. which were reviewed earlier identify higher-level terms (e.g., searchers around the world: as re-
(see subsection "Background Work Steels and Generic Tasks). The task search in some task (say diagnosis
in Knowledge Modeling"). KADS, structure shows how these terms or design) is carried on in various
as well as Clancey's heuristic classi- can be related through tasks, meth- domains around the world, differ-
fication have identified extremely ods and subtasks. There is still a ent methods are identified, their
general terms or tasks. These tasks problem with mapping between knowledge requirements under-
can be used to describe almost any terms at the same level; however, stood, generalizations and com-
method. Hence they can be consid- Clancey's system model-construc- monalities recognized, perfor-
ered a set of primitive knowledge- tion perspective (i.e., the view that mance characteristics of the
modeling terms. Generic task terms what KBSs really do is construct methods are analytically under-
are at a higher level of abstraction models of systems they are reason- stood, and a task structure which
in the task structure. They are not ing about) provides a scheme to incorporates this collective product
general enough to be used to de- compare these terms by represent- of research emerges. Knowledge-
scribe all methods, but can be used ing each term in a uniform set/ modeling for that particular task is
to describe how higher-level tasks graph/operator language (121. then facilitated by this task struc-
such as diagnosis and design can be 3. Overdetermination and rigidity ture: we know what kinds of knowl-
performed. Generic tasks can, in in methods are avoided by using edge and strategies are needed for
turn. be described using more the task structure because a com- the methods and can use the terms
primitive terms. This is in fact what plete method does not need to be of analysis to model the knowledge
has been done throughout the specified (only the subtasks are in the domain.
years of research on generic tasks- given and not all of these have to be In this sense, over the last several
the large-grained tasks have been used to accomplish a task). Further- years significant knowledge has
repeatedly decomposed into finer- more, multiple methods can be been accumulated for the following
grained tasks, used to model domains that do not tasks: diagnosis, hierarchical de-

Finally, the task structure clears warrant the selection of a single sign, configuration tasks and some
up the confusions discussed earlier method for accomplishing a task. classes of device simulation tasks.
(see section "Need for Uniform Overdetermination and rigidity of We have outlined the task structure
Framework"). These can be ad- implementation can be avoided by for some of these tasks, and shown
dressed as follows: dynamically determining methods how the modeling of knowledge is

I. The relation between complex and subtask sequencing at run- facilitated by this framework.
time. Details of how this can be The usefulness of the task analy-

in one sense ee to the ssi done in the context of generic tasks sis in the form proposed in this arti-in nesenerelative totesystem
being described. For example. if a are given in [18]; but the basic idea cle (and the resulting task struc-task is implemented by a method is to dynamically determine what to ture) is not limited to automation ofthat isipaw mens tased b y amethed do at each problem-solving step. problem-solving. The analysis itselfthatspatasks are more p i tiwhile That is. after each operation is per- is merely a description of how thesubtasks are more primitive, while
the higher task is more complex. formed the situation is reassessed to task might be decomposed and
The concepts are relative because -determine what can be done next. what kinds of knowledge are
any task, even those lower in the Knowledge is then brought to bear needed. It is possible that for one
task structure, can potentially be to select one of these operations. reason or another some of the

methods may not be automatable:implemented using a complex set methods may not be
of subtasks. In another sense, we Koefdge Modeling hs a Task- the needed knowledge may not be
can identify tasks appearing as sub- $paeijic Eulerpriae available in a computer-processable
tasks in a large number of methods There have been some attempts to form. or the method might itself
as being more primitive or general develop a small number of basic not be sufficiently operationalized.
than tasks appearing in fewer terms in which to formulate all the The task analysis still provid.ts the
methods. Hence we can say that knowledge to be represented in tool for decomposing a task and
diagnosis is a less general and more KBSs. We think it premature to dis- identifying which subparts of an
complex task than data abstraction. cuss representing knowledge in overall task can be automated. The

general at this point in our under- subtasks for which automatable
2. The variety of knowledge- standing. We can, however, for var- methods do not exist at a given
modeling terms that have been pro- ious types of tasks, develop detailed stage of Al theory-making can be
posed is due to researchers looking theories of the methods and knowl- simply directed to a human prob- -'
at different parts of task structures edge required to implement them lem solver with expertise in the sub-
and having different goals in mind. and the terms in which such knowl- task. Thus the task structure pro-
Some have looked for extremely edge can be represented. Thus the vides the framework for natural
primitive terms (e.g., Clancey and knowledge-modeling methodology human-machine cooperation. As
KADS), while others have tried to is a cumulative enterprise by re- we understand how to operational-

63

III[II~II•I• II II•I• A III"II+rll"'I1"112 \,I '+ ,,.

ize a previously unautomdted Conceptual representation of onedi- Art if. Intell. 33 (1987). 1-64.
method and we acquire the knowl- cal knowledge for diagnosis by comn- 22. Marr. D. Vision. W.H. Freeman.

Iedge needed for it. that subtask can puter: MDX and related systems. In New York. N.Y.. 1982.
b e given over to the machine. The ,4dvt'iric in C;omputer-s. mI. Yovits. 23. McDermott. J. RI: A rule-based

task structure thus provides a mu- Ed.. Academic Press. 1983. 217- configurer of computer systems.

bile boundary between human and 293. Art if. intell. 19. I (1982). 39-88.
1.Chandrasekaran. B.. Tanner. M. 24. McDermott. J. Preliminary steps,

machine in problem -solving, and Josephson, J. Explaining con- toward a taxonomy of problem.

Acknowledgments trol strategies in problem solvinig. solving methods. in Automating

We thank the members of the LA IR IEEE Expert (1989). 9-24. Knowledge Acquisition for Expert S -.,-

and the Division of Mledical Infor- 1. Clancei'. W.J. Heuristic classilica- tems. S. Marcus, Ed.. Kluwer Aca-I mtisforther cmmets nd is- tion. Artif. Intel!. 27. 3 (1985). 289- demic 1988, pp. 225-256.
naisfrtercmetan i- 3500. 25. Mittal. S. and Chandrasekaran. B.

cussion on this article. B. 12. Clancey. W.J. Model Construction Patrec: A knowledge-directed data-
Ch.. -rasekaran's work is currently Operators. Artif. Intell. 53 (1992). base for a d& -Postic expert system.jsupported by DARPA under 1-115. Computer 1;. .) (1984). 31-58.
AFOSR contract F-49620-89-C- 13. Eshelman. L. MOLE: A knowledlge- 26. Musen. M.A. Aulomated Generationq~
0 110. Todd R. Johnson and Jack W. acquisition tool for cover-and- Model-Based Knowledge-Acquisition
Smith's research is supported by differentiate systems. In A4utomating Tools. Morgan Kaufmann, Inc.. SanINational Heart Lung and Blood Knowledge Acquisition bor Expert Syr- Mateo, Calif.. 1989.

Insttut grnt L-3876 nd a- erns. S. Marcus. Ed.. Kluwer Aca- 27. Newell. A. The Knowledge Level.
tionl Lbrar ofMedcinegrat deic,198. pp 3780.Al (Summer 1981). 1-19.

tioalLirar o Mdicnegrnt 14. Goel. A.. Soundararajan. N. and 28. Newell. A.. Yost. G.. Laird. *J.E..
ILM-04298. 0 Chandrasekaran, B. Complexity in Rosenbloom, P.S. and Altmann, E.

classificatory reasoning. in Proreed- Formulating the problem space
References ings of AAAI (Seattle. Washington. computational model. In Carneieg-

1. Breuker. J. and Wielinga. B. Mod- July 13-18, 1987) pp. 421-425. Mellon Computer~ Science: A 25-1ear
els ol expertise in knowledge acqui- 15. Gomez. F. and Chandrasekaran. B. Commemorative, R.F.. Rashid. Ed..
sition. In Topics in Expert System De- Knowledge organization and distri- ACM Press: Addison-Wesley.
sign. G;. Guida. C. Tasso Eds. bution for medical diagnosis. IEEE Reading, Mass.. 1991.

Elsevier Science B. V.. North- Trans. Svst.. Man and Cybernetics 11. 1 29. Pearl. J. Probabilistic Reasoning int
I Holland. 1989. pp. 263-295. (1981). 34-42. Intelligent Siatems:,Nehv.orks of Plauws
12. Brown. D.C. and Chandrasekaran. 16. Gruber. T. and Cohen. P. Design ble Inference. Morgan Kaufman.

B. Design Problem Solving: Knowledge for acquisition: Principles of knowl- 1988.
Structures and Control Strategies. Mor- edge system design to facilitate 30. Peng. Y. and Reggia. J.A. .4bductiveIgan Kaufmann, San Mateo. Calif.. knowledge acquisition. Int. J. AlaIn- Inference Models for Diagnowti

I1989. Machine Studies 26, 2 (1987). 1431- Problem-Solving Springer- Verlag.
3. Bylandcr. T.. Allemang. D.. Tan- 159. New York. N.Y.. 1990.

7ner. M.C. and Josephson. J.R. The 17. Johnson. K.A.. Johnson, T.R.. 31. Punch. W.F. A Diagnosis System Uing
jcomputational complexity of' ab- Smith. J.W.. Jr.. Dejongh. M.. a Task Integrated Problem Solver Ar-
Iductio~n. Art if. Intell. 49, (1'991). 25- Fischer. 0.. Amyra. N.K and chitecture (TIPS), Including Causal

60. Bayazitoglu. A. RedSoar-A (55tE'1D Reasoning. Ph.D. dissertation. The
4. Bylander. T. and Chandrasekaran. for red blood cell antibody identifica'tion. Ohio State University. 1989.

B. G.eneric Tasks for knowledge. In Proceedings of scAMCvt 91. 32. Reiter, R.A. A theory of diagnosis
based reasoning: The "right" level McGraw Hill. Washington D.C.. from first principles. Artif. Intell. 32
of abstraction for knowledge acqui- 1991, 664-668. (1987). 57-95.
sition. Int. 1. Man-Machine Studies 18. Johnson, T.R. Generic tasks in the 33. Shortliffe. E.H. Computer-Based
26. (1987). 231-243. problem-space paradigm: Building Medical Consultoations: MYCIX El-

5. Bs'lander. T. and Mittal. S. CSRL: A flexible knowledge systems while sevier. New York, N.Y. 1976.
language for classificatory problem using task-level const .raints. PhID. 34. Steels. L. Components of expertise.
solving. A/ VII, 3 (1986). 66-77. dissertation. Ohio State University. Al 11. 2 (1990). 28.-49.

6. Chandrasekaran. B. Generic tasks 1991. 35. Wieliriga. B.J.. Schreiber. A.T. and
in knowledge-based reasoning: 19. Josephson'. J.. Chandrasekoaran. B.. Breuker. J.A. KADS: A modelling
High-level building blocks for ex- Smith. J. and Tanner. M. A mecha- approach to knowledge engineer-
pert system design. IEEE Expert 1, 3 nism for forming composite cx- ing. Knowkedgs. Acquisition 4 (1992).

7.Cadaeaa.8 einpo. Ss. aadCbseis1.(1986). 23-30. planatory hypotheses. [FEE Trans. 5-33.

lem siolving: A task analysis. Al (1987), 445-454. CR Categories and Subject Descrip.
Magazine 11, 4 (1990). 59-71. 20. Krishnan, R.. Li. X. and Steier. 1). tori: D.2.1 [Softwarel: Software Engi-

8. Candrasektaran. B. Models versus Development of a knowledge-based neering-reyuireueutssprctfiraomos;
rue.deep versus compiled content mathematical model formulation D.2. 10 (Sof'tware): Software Engi-

versus form: Some distinctions in system. Commun. ACM (Sept. 1992). neering-dnasgit; 1.6.0 (Covaputing
knowledge systems research. IEEEA 21. Laird. J.E.. Newell. A. anid Methodologieu]: Simulation and Mlod.
Expert (Apr. 1991). 75-79. Rosenbloom. P.S. SOAR: An arc hi- eling-general: 1.6.3 [Computing Meth-

9. Chandrasektaran. B. and Nlittal. S. tecture for general intelligen c. odologleal: Simulation and Modeling-

1 ~ ~~64 "' ,

I

applicatio•m: K.6.3 [Computing
Milieuxi: Management of' Computing
and Information Systems-soltSjare
mijnagement: K.6.4 (Computing
Milieuxl: Management of Computing
and Information Systems- -ty,*m man-
agement

General Terms: Design. Methodology
Additional Key Words and Phrases: j

Analysis. Modeling

About the Authors:
B. CHANDRASEKARAN is professor
(if computer and information science
and director of the Laboratorv for Al
Research at The Ohio State University.
Current research interests include cog- !
nitive architectures, knowledge-based

reasoning in diagnosis and design. de-
vice understanding. and visual reason-
ing. Author's Present Address: Labora- I
tory for Al Research. Department of

Computer and Information Science.
Ohio State University. Columbus, OH
43210: email: chandra~acis.ohio-state. I
edu.

TODD R. JOHNSON is an assistant
professor with the Department of Pa- l
thology. Laboratory for Knowledge-

Based Medical Systems at The Ohio
State University. Current research in-
terests include flexible problem-solving,]
modeling the acquisition of expertise.
azId reasoning with external informa-
(ion.

JACK W. SMITH is assc4'iate professor

ol patholog, and computer and inlor-
mation science and director of the Divi-
sion of Medical Informatics at The Ohio
State University. Current research in-

terests include task-specific and cogni-
tive ,trchitectures in knowledge inten-
sive domains, abductive problem- !
solving. and decision support systems

in medicine. Authors' Present Address:
Laboratory for Knowledge-Based Medi-
cal Systems. 376 W. 10th Room 571. !
Columbus. Oh. 43210: email: tj(a-

cis.ohio-state.edu; smith.30(fosu.edu

l'rlltltion tO 4 to|pv without let- ci tr part tWl
this ittatri.al is granted prtnvidel that the
i opicar not ¢tiadt ttr dtistrib)utd l-jr diret t

li turi l i;l ,d antmtag. t.he A(I M o tyrigtht
tit i-t i the tlt-" fI the publit atiton andts Ii
,Latt al, 1 tar. atid notmt c is given that (tp.ing

I, b)y lm•-riti•,sitn of the Assmmiaoittn lor
(:t,,aiputintt latmhincry. ,t,,qtytpvtherkw. o)r
its republish, rtequires a hta. and/or %lpt ti-t I

15 MA 1X1FJ2-071/92/(MX)-124 iI1

ooaums4saheu hemH* I-- 65 1

Manuscript Date: June 12. 1993

I
Form and Content Issues in the Abductive Framework for Recognition'

B. Chandrasekaran, John R. Josephson and Susan G. Josephson2

Laboratory for Al Research
The Ohio State University

Columbus, OH 43210, USA

Introduction

In an earlier paper, Chandrasekaran and Goel (1988) considered different
approaches to the task of classification. The classification problem is one of mapping
from observations (data) to pre-enumerated classes. As the classification problem grows
complex, the solutions evolve from simple one step numerical mapping to use of
intermediate abstractions (symbols) to rules that use relations between abstractions to
complex reasoning with knowledge, summarized in the progression:

numbers--> abstractions (symbols) --> relations --> knowledge structures
We compared pattern classification approaches, connectionist networks, syntactic

methods and finally knowledge-based classification. The task of classification
particularly was deemed important since it is so ubiquitous, playing a role in visual and
speech recognition, diagnosis and numerous other tasks of importance. Over the last
several years, however, a broader framework called Abduction has been gaining attention
for many of the same problems that have been traditionally cast in the mold of
classification. In this paper, we discuss the structure of the abductive task and relate it to
the problem of recognition in general. We will note that classification still has a role as a
component in abduction.

Form versus content
One particular idea that didn't seem to come through very clearly in

"Chandrasekaran and Goel (1988) is the issue of form versus content. Often much of the
discussion in the field of Al and pattern recognition seems to revolve around whether this
mechanism or that (connectionist nets, or logic or symbolic approaches) is the right way
to go about building a system to solve some problem (say for visual recognition). We
have argued elsewhere (Chandrasekaran, Goel and Allemang, 1989) that, for many
purposes, mechanism questions are not the right kind of questions to ask, at least not in
the beginning. These questions should be deferred until an understanding of the content
of a task is obtained. When the task structure is properly understood, then decisions
about what kinds of mechanisms arm appropriate for what subtasks can be made. Marr
(1982) of course has also made similar arguments, and Newell (1981) is also credited

with similar remarks in his discussion on the Knowledge Level/Symbol Level distinction.
In spite of these well-known analyses, there is still not a suffcient understanding of the
importance of content issues in most of the research in the field.

1For presentation at Image Processing: Theory and Applications, An Interational
Conference, Sanremo, Italy, June 16,1993.

2Also with the Co s Cdiege of At and Design, Coumxbus, Ohio, USA

66

Form and Content Issues in the Abductive Framework for Recognition

In this talk, we will discuss an abductive framework for recognition, and present
the discussion largely in terms of the content of the task: what kinds of information are
needed, what kinds of subtasks arise the course of performing abduction, and so on. The
work that is presented here is elaborated in greater detail in (Josephson and Josephson,
1994).

Abduction

Abduction is a general framework for many important problems in cognition and
perception. Abduction has been used to frame the problem of diagnosis, scientific theory
formation, natural language understanding, and - of particular relation to the subject of
this conference -- abduction is a more general framework than classification for visual
recognition

Abduction or inference to the best explanation is a form of inference that goes
from data describing something to an explanatory hypothesis that best explains or
accounts for the data. Thus abduction is a kind of theory-forming or interpretive
inference. We take abduction to be a distinctive kind of inference following this pattern
pretty nearly3 :

D is a collection of data (facts, observations, givens).
H (hypothesis) explains D (would if true, explain D).
No other hypothesis is able to explain D as well as H does.

Therefore, H is probably true.

The core idea is that a body of data provides evidence for a hypothesis that
satisfactorily explains or accounts for that data (or at least it provides evidence if the
hypothesis is better than explanatory alternatives).

We can see quite easily why visual or auditory recognition fits this pattern of
inference. The task is specified by a set of data (pixel intensities, or auditory signal
amplitudes at different times), and the goal is to come up with a hypothesis (a description
of the scene in terms of objects and their locations, or words that the speaker uttered as
he or she produced the sound pattern) that best corresponds to the cause that produced the
data. Of course, as a rule, different hypotheses could explain the same data, i.e, the same
pixel intensity distribution or temporal sound amplitude distribution could have been
caused by different objects or words, so the best that a perceive can do is to come up with
the hypothesis that best accounts for the data.

Sometimes a distinction is made between an initial process of coming up with
explanatorily useful hypothesis alternatives and a subsequent process of critical
evaluation wherein a decision is made as to which explanation is best. Sometimes the
term "abduction" has been restricted to the hypothesis-generation phase. We use the
term here for the whole process of generation, criticism, and acceptance of explanatory
hypotheses. One reason is that, although the explanatory hypotheses in abduction can be
simple, more typically they are composite, multipart hypotheses. A scientific theory is

3 This brmaion is laiguly due lo Wlm Lycw.

67

i

I B. Chandrasekaran, J. R. Josephson and S. G. Josephson

I typically a composite with many separate parts holding together in various ways4, and so
is our understanding of a sentence, and our judgment of a law case, as well as our
interpretation of what we see. But no feasible information-processing strategy can afford
to explicitly consider all possible combinations of potentially usable theory parts, since
the number of combinations grows exponentially with the number of parts availableJ (Josephson and Josephson, 1994). Reasonably-sized problems would take cosmological
amounts of time. So, one must typically adopt a strategy which avoids generating all
possible explainers. Some pre-screening of theory fragments to remove those that are

Simplausible under the circumstances makes it possible to radically restrict the potential
combinations that can be generated, and thus goes a long way towards taming the
combinatorial explosion. But such a strategy breaks the clean separation between theI process of coming up with explanatory hypotheses, and the process of acceptance,
because it mixes a degree of critical evaluation into the process of hypothesis generation.
Thus, computationally, it seems best not to neatly separate generation and acceptance.
We take "abduction" to include the whole process of generation, criticism, and possible
acceptance of explanatory hypotheses.

It seems to us that perception is abduction in layers. We present here a layered-
abduction computational model of perception which unifies bottom-up and top-down
processing in a single logical and information-processing framework. In this model the
processes of interpretation are broken down into discrete layers, where at each layer a
best-explanation composite hypothesis is formed of the data presented by the layer or
layers below, with the help of information from above. The formation of such a
hypothesis is a process of abductive inference. The model treats perception as a kind of
frozen or "compiled" deliberation.

I Perception as compiled deliberation

There is a long tradition of belief in Philosophy and Psychology that perception
relies on some form of inference (Kant, 1787; Bruner, 1957; Gregory, 1987; Fodor,
1983). But this has been typically thought of as some form of deduction, or simple
recognition, or feature-based classification, not as abduction. In recent times researchers
have occasionally proposed that perception, or at least language understanding, involves
some form of abduction or explanation-based inference (Charniak and McDermott, 1985,
p.5 57; Charniak, 1986; Dasigi, 1988; Josephson, 1982, pp. 87-94; Fodor, 1983, pp. 88,104; Hobbs, Stickel, Martin, et al. 1988). As Peirce, the philosopher who originally

coined the term "abduction", wrote, "Abductive inference shades into perceptual
judgment without any sharp line of demarcation between them" (Peirce, 1902, p. 304).

Thinking of perception as inferential is not to suppose that perception uses
deliberative reasoning. The abductive inferences we hypothesize to occur in perception
are presumably very efficient, with very little explicit search going on at run time

q (perception time). Moreover, some of the parts of abductive processing might not be
fully realized by actual processing at run time, or they may be done very efficiently with
no extraneous support processing. For example alternative hypotheses may be prestored,
and simply activated during perception, rather than generated fresh. Similarly,

4ForWmnplg Damn (1991) &WNWftb 8 MOe m qgnk toy.

68

Form and Content Issues in the Abductive Framework for Recognition

hypothesis interactions, such as degrees of compatibility and incompatibility, may be
prestored. This kind of storing of knowledge in just the right form for efficient task-
specific processing is just what we mean by "compiled" cognition. It is a kind of
thinking well without thinking much.

Cognition might be compiled either as "software" or as "hardware" (or in some
intermediate "firmware" form). Moreover, compilation might be done by evolution, or
through some sort of learning, or incrementally as needed for perception-time processing.
Hardware-compiled structures are presumably not plastic, while learned structures can be
subsequently revised (in principle anyway). Thus particular abductive mechanisms
might be formed either by evolution, by learning, or at run time. The point of
compilation for perception is to avoid computationally expensive run-time search. This
can be done by compiling hypothesis fragments and evidential links, as we said. These
evidential links may be implemented by currents running along wires, firing rates of
connections between neurons, weighted symbol associations, or in some other way; but
however they are implemented, they will still really be evidential links (that is, this level
of description is not dispensable).

Thus, one way in which perception may plausibly be hypothesized to be very
much like deliberation is that the steps and dependencies should make sense logically
(abductively). Each piece of processing should be justifiable in ways like ... is
apparently the only plausible interpretation for this datum," ... combine to make this
hypothesis better than that one," "... was ruled out because .. .," and so on.

Another bridge from perceptual abduction to deliberative reasoning is that there
are functionally similar kinds of impasse that can occur during processing. Each such
impasse creates a need to fall back on some other form of processing, and provides an
opportunity to learn. One such impasse type is where there are no good hypotheses to
account for some firmly established data item. In this case (if there is time) a
deliberative strategy might be to derive a new hypothesis with the needed properties from
background causal knowledge. Apparently this goes on in diagnosis in domains where
there are good causal models of the system being diagnosed. Another way to handle this
type of impasse is to first capture a description of the data to be accounted for, assume it
can be accounted for by some new hypothesis-forming concept C, and begin to build up
more description of C based upon what can be inferred or reasonably conjectured from
the context. This additional analysis presumably occurs, not so much immediately at run
time in the heat of the original problem solving, but shortly thereafter at "learn time,"
when run-time information is still avail'ible, but urgency has subsided and resources are
available for more expensive processing. This learning strategy is neutral between
deliberative and perceptual abduction.

A nice example of compiled abduction in perception is that of 3-dimensional
vision. The data to be explained are the disparities between the images presented by the
two eyes; the explanatory hypotheses are something like overlapping planes, i.e., firont-
back relationships across edge boundaries.

Perctlonas Abduction In Layers

Computational models of information processing for things like vision and

spoken language understanding have commonly supposed an orderly progression of

69

__ _ _ _ _ _ _ _ -'-r-..

I
B. Chandrasekaran, J. R. Joscphson and S. G. Josephson

I layers, beginning near the retina or auditory periphery, where hypotheses are formed
about "low-level" features, e.g., edges (in vision) or bursts (in speech perception), and
proceeding by stages to higher-level hypotheses. Models intended to be comprehensive
often suppose three or more major layers, often with sublayers, and sometimes with
parallel channels that separate and combine to support higher-level hypotheses. Forj example, shading discontinuities and color contrasts may separately support hypotheses
about object boundary (Marr, 1982; Lesser, et al., 1975). Recent work on primate vision
appears to show the existence of separate channels for information about shading,

Stexture, and color, not all supplying information to the same layers of interpretation
(Livingsone and Hubel, 1988). Those easily and naturally are separate channels which
then need to converge so as to form a unified hypothesis concerning what is seen.

Another need for layered processing in perception comes from the problem of
combining information from the different senses. Combining information from different
senses is functionally no different from combining information from different channels
within a single sense. The different senses are simply different channels to central,
higher "senses." Separate channels within the visual system deliver up the data useful at
a certain level to form hypotheses about the locations of 3-d objects; similarly, both sight
and hearing can deliver up the data useful for forming hypotheses about object identity.
Think of distinctive bird calls, for example, or a lecturer whose identity is uncertain.

One special problem for multi-sense integration is the problem of identifying a
"that" delivered up by one sense, with a "that" delivered up by another. Which person is
the one that is speaking? Is the same object being seen in the infrared as that being seen
in the ultraviolet? Logically, it should be possible for information derived from one
sense to help with resolving distinct objects within the other sense. There is actually
some evidence that vision can help hearing to separate distinct streams of tones (Massaro,
1987, p. 83) and hear the tone stream as two distinct auditory objects.

One useful representation for multi-sense object perception is that of a "hot map"
consisting of overlaid spatial representations, i.e., spatial representations from the

I different senses brought into "registry" or "correlated" into a single spatial
representation. Thus, for example, a robot might bring together separate channels of
information from its visual and tactile senses to form a unified spatial representation of
its immediate surroundings. Such a map should be maintained continually, and updated
and revised as new information arrives and is interpreted. This hot map, with its symbols
on it, can be seen as the resulting composite hypothesis formed by a process of layered
abductive interpretation.

In vision most of the processing of information is presumably bottom-up, from
information produced by the sensory organ, through intermediate representations, to the
abstract cognitive categories that are used for reasoning. Yet top-down processing is
presumably also significant, as higher-level information imposes biases, and helps with
identification and disambiguation. Vision can thus be thought of as a layered

£ interpretation task wherein the output from one layer becomes data to be interpreted at
the next. In image understanding the layers are something like this:
Retinal Activation --> segmentation, edges, regions --> 2-1/2D overlapping planes,
occlusions --> grouping -- > object ID, scene analysis

Layers may be fixed in advance or formed at run time. Output from one layer
becomes data to be interpreted at the next layer. Layered interpretation models for non-

i70

Form and Content Issues in the Abductive Framework for Recognition -"

perceptual interpretive processes make sense too. For example, medical diagnosis can be
thought of as an inference that typically proceeds from symptoms, to pathological states,
to diseases, to disease processes to etiologies. In speech comprehension, for example, the
layers might be acoustic signals to phonetics to grammar and clauses etc. to semantics.
Perception, speech comprehension and medical diagnosis all have a similar pattern of
layers of abductive processing. Similar to perception, medical diagnosis is presumably
mostly bottom up, but with a significant amount of top-down processing serving similar
functions.

It is reasonable to expect that perceptual processes have been optimized over f
evolutionary time (become efficient, not necessarily optimal), and that the specific layers
and their hypotheses, especially at lower levels, have been compiled into special-purpose
mechanisms. Within the life span of a single organism, perceptual learning provides
additional opportunities for compilation and optimization. Nevertheless, it seems that at
each layer of interpretation the abstract information-processing task is the same: that of
forming a coherent, composite best explanation of the data from the previous layer or|
layers. That is, the task is abduction, and in particular, abduction requiring the formation
of composite hypotheses.

If the information processing that occurs in the various layers and senses is I
functionally similar, then perhaps their mechanisms are similar too at a certain level of
description. Thus we are led to hypothesize that the information-processing mechanisms
that occur in vision, hearing, understanding spoken language, and in interpreting
information from other senses (natural and robotic), are all variations, incomplete
realizations, or compilations (domain-specific optimizations) of one basic computational
mechanism. Thus we propose what we may call the layered-abduction model of
perception. What is new in this model is the specific hypothesis that perception uses
abductive inferences, occurring in layers, together with a specific computational model
of abductive processing.

Task Structure Model of Abduction in Layers

A task structure (Chandrasekaran, 1990, Chandrasekaran and Johnson, 1993) is a
representation of a task in terms of the methods that are applicable for it in the domain
and the conditions under which each method is applicable. A task analysis is a functional
decomposition of an information processing task. Such an analysis is intended to answer
questions about how it is possible to accomplish the task, especially, how the task can be
feasibly accomplished. Thus, the task is divided into subtasks and those subtasks are
divided into sub-subtasks, and so on. The subtasks are those things which are required to

accomplish the task, and the sub-subtasks are those things which are required to
accomplish the subtasks. |

A task structure analysis identifies domain-specific and domain independent
aspects of the tasks and methods for their accomplishment. The task can be feasibly
accomplished if a decomposition can be found such that each subtask is feasible and can I
be combined with the other subtasks by a feasible method.

For each task (subtask, sub-subtask, etc.) there are one or more possible methods
that can be used to accomplish it. Methods are ways to accomplish some task, like using
an abacus or using your fingers or using a calculator are all alternative methods for
performing the task of addition. Each method is itself specified in terms of how it uses

71

- -~~~~~,~.-- . . - .-- . . - - -

B. Chand ==sekara, L. R. lophson and S. G. Joephson

knowledge and inference to achieve its goals, and in terms of what subgoals (subtasks) it
sets up and requires to be achieved before it can succeed. This kind of decomposition
can be done recursively until methods which achieve subgoals but which do not set up
additional subgoals of their own are reached. Alternative methods for accomplishing the
task may make use of a common subtask, and so on recursively.

A task can have one or more methods associated with accomplishing it. Each of
the methods is characterized by forms of knowledge and inference that are necessary for
carrying out the method and by additional subtasks that will need to be achieved in order
to complete the application of the method for that task. A method can be a procedure
where the sequencing of steps is all prespecified, but it can be more abstract; in Newell's
problem space terminology [Newell, 1980], it can be a search in a problem space. (In
fact, such methods are the ones that are interesting from an AI point of view.) For
example, the problem of classification has a method called hierarchical classification,
which consists of exploring the classification hypotheses organized as a hierarchy. This
calls for knowledge in the form of hierarchies and inference methods which are
variations of, and include as a default strategy, top-down explorations of the hierarchy.
This method has subtasks in the form of evaluating the evidence for or against a
hypothesis so that it can be established or rejected. This subtask similarly can have many
methods associated with it, each of which is characterized by its own knowledge and
inference requirements.

We can analyze the task of abduction to have two main subtasks:
* subtask 1) generating elementary hypotheses,
* subtask 2) synthesizing composite explanations.

The subtask, generating elementary hypotheses, has two sub-subtasks:
- sub-subtask 1.1) evoking
"" sub-subtask 1.2) instantiating elementary hypotheses

The sub-subtask 1.2., instantiate elementary hypothesis, has two sub-sub-subtasks:
* sub-sub-subtask 1.2.1) scoring the elementary hypotheses
e sub-sub-subtask 1.2.2) determining explanatory coverage.

This decomposition is very general. The typical abductive answer is a composite,
and somehow, explicitly or implicitly, there must be some method of choosing which
elementary hypothesis to consider, some way of making them specific to the case, and
some way of accepting and combining. Given this task sructure, the information
processing at each layer is decomposed into three functionally distinct types of activity:
evocation of hypotheses, instantiation of hypotheses, which are the two sub-subtasks
making up the first subtask, and composition of hypotheses, which makes up the second
subtask of the overall abductive task.

Evocation (sub-subtask 1. 1) can occur bottom-up, a hypothesis being stimulated
for considerations which are cued by the data presented at a layer below. That is, the
presence of a certain finding suggests that certain hypotheses are appropriate to consider.
More than one hypothesis may be suggested by a given datum. Evocation can also occur
top-down, either as the result of priming (an expectation from a level above), or as a
consequence of data-seeking activity from above, which can arise from the need for
evaluation. As when you what to decide whether the person coming towards you is
really Jane, and so you look for Jane's characteristic mole on the left cheek. Evocations
can generally be performed in parallel, and need not be synchronized.

72_ _ __ _

- - -

Form and Content Issues in the Abductive Framework for Recognition -

Instamiation (sub-subtask 1.2) occurs when each stimulated hypothesis is
independently scored for confidence (sub-sub-subtask 1.2.1), and a determination is
made about what part or aspect of the data is accounted for by the hypothesis (sub-sub-
subtask 1.2.2). Instantiation is in general top-down. 5 During instantiation data may be
sought that was not part of the original stimulus for evoking a hypothesis. Each
hypothesis is given a confidence value on some scale, which can be taken to be a "local It
match" or primafacie likelihood, a likelihood of being true based only on consideration
of the match between the hypothesis and the data, with no consideration of interactions
between potentially rival or otherwise related hypotheses. Typically, many evoked
hypotheses will get very low scores, and can be tentatively eliminated from further
consideration. The dam that are accounted for by a hypothesis may or may not be
identical to the data on the basis of which the hypothesis was scored, or the data that didI
the evoking.

In the course of instantiation the hypothesis set may be expanded by including
subtypes and supertypes of high-confidence hypotheses, if the space of potential I
hypotheses is organized hierarchically by level of specificity. Instantiation is done most
efficiently when it is based on matching against prestored patterns of features, but slower
processes of instantiation are also possible whereby the features to match are generated at I
run time.

The result of a wave of instantiation activity is a set of hypotheses, each with
some measure of confidence, and each offering to account for some portion of the data. !
Since within a particular wave of instantiation, hypotheses are considered independently
of each other, the process of instantiation can go on in parallel.

Composition (subtask 2) occurs when the instantiated hypotheses interact with I
each other and (under good conditions) a coherent best interpretation emerges. At the
beginning many hypotheses will probably have intermediate scores, representing
hypotheses that can neither be taken as practically certain, nor as being of such a low
confidence as to be ignorable. So knowledge of interactions between the hypotheses is
brought to bear to reduce the degree of uncertainty, increasing confidence in some of
them, and decreasing confidence in others. (See Josephson and Josephson, 1994, for
details of strategies.)

Top-down information flow
In the layered-abduction computational model composite hypotheses are formed

in several places at once in a coordinated fashion. Each locus of hypothesis formation
we call an agora, after the market place where the ancient Greeks would gather for
dialog and debate. The idea is that an agora is a place where hypotheses of a certain type
gather, and contend, and where under good conditions a consensus hypothesis emerges.
In typical cases the emerging hypothesis will be a composite, coherent in itself, and with
different sub-hypotheses accounting for different portions of the data. For example in
vision the "edge agora" is the presumed location where edge hypotheses are formed and

5s mwitndamsmkcis o duu Iaash•v etdbasot'*eiutk 1 11d 1
m blw, and Im rpd roesmin need =ccx, at rest for sa .=f a tit utr*ai& mis Im I

b*cldlykih, it scmp Aoilmlyb epesieat lestin Ve tart rimThb~o meprhn wa Wrd cimpltion
iiheiwwraccq is traM kw qiicmua

73

-

* 1=

B. Chandasekaa, J. R. Josephson and S. G. Josephson

accepted, each specific edge hypothesis accounting for certain specific data from lower-
level agoras.

The agoras are organized in an information-flow network with a clear sense of
direction defining the difference between bottom-up and top-down flow. Bottom-up is
from data to interpretation. The main output from an agora is "upwards," the data to be
interpreted by "higher" agoras. Another possible output is "downwards," for example
expectation might influence the consideration and evaluation of hypotheses at lower
agoras. Thus the relationship between "data" and "explanation" is a relative one, and an
explanation accepted at one agorr becomes data to be explained at the next. Though we
sometimes use the word "layer" to describe an agora or contiguous cluster of them, we
do not suppose that the agoras are all neatly lined up. The paths may be branching and
joining (but no cycles are permitted). The basic strategy is to try to solve the overall
abduction problem at a given agora by solving a sufficient number of smaller and easier
abductive sub-problems at that agora.

Downward-flowing information processing between layers can occur in at least
four ways. One is that the data-seeking needs of hypothesis evaluation or discrimination
can provoke instantiation (top-down evocation and evaluation of a hypothesis). Anotheri is that expectations based on firmly established hypotheses at one layer can "prime"
certain data items (i.e., evoke consideration of them and bias their score upwards). A
third way is that hypotheses that are uninterpretable as data at the higher level (no
explanation can be found) can be "doubted," and reconsideration of them provoked (also
reconsideration of any higher-level hypotheses whose confidence depended on the
questionable datum). Finally, data pairs may be jointly uninterpretable, as for example in1 vision when the image has two mutually incompatible interpretations (to some degree of
strength), and reconsideration can be provoked from above. In these ways higher-level
interpretations can exert a strong influence on the formation of hypotheses at lower
levels, and layer-layer harmony is a two-sided negotiation.

We may summarize the control strategy for hypothesis-composition by saying
that it employs multi-level and multiple intra-level island-driven processing. Islands of
relative certainty are seeded by local abductions and propagate laterally
(incompatibilities, positive associations), downwards (expectations), and upwards
(accepted hypotheses become data to be accounted for). Processing occurs concurrently
and in a distributed fashion. Higher levels provide soft constraints through the impact of
expectations on hypothesis evocation and scoring, but this does not strictly limit the
hypotheses that may be accepted at lower levels.

Conclusion

Notice the level of description we have given here. This architecture is a high-
level architecture and is potentially compatible with a number of different

I implementation architectures, such a neural nets or traditional symbolic programming. It
:1 might be implemented as an "algorithmic computer",that is, an instruction follower, or as

a "connectionist computer," whose primitive processing elements work by propagating(•activations. We have described the functional and semantic significance of various
actions of the machine, and the flow of control, but not precisely how these actions are
implemented on some underlying machine. That is, once we view the problem in a task

I
74

iL .,,.....

Form and Content Issues in the Abductive Framework for Recognition "

structure way, we have a content-driven perspective. The layered abduction view does i
not commit us to using connectionism, or symbolic processing. It is a theory of the
information processing task, that is, a computational theory which is a description of the i
input output relations, and by saying it occurs in layers and how it occurs at each level in I
terms of subtasks, etc, we are describing the strategy for the task. This task structure
level is above the level of algorithms and data structures, or nodes and weights, which in I
turn are a level above the level of implementation. In this sense the task structure
analysis is a content theory.

A task structure has an enormous amount of leverage in directing knowledge I
acquisition and system building, since the knowledge and inference requirements for the
methods can be explicitly identified. The task-oriented view has significant potential to
aid learning. In addition to the knowledge-type vocabulary that it provides for each task,
its ability to generate explanations at the right level can give significant leverage for
learning (Chandrasekaran,1986, 1987, Bylander and Chandrasekaran, 1987).

Acknowledgments

B. Chandrasekaran thanks Prof. Gianni Vemazza for his invitation to give a talk at the
conference. We also acknowledge the support of DARPA under AFOSR Contract F-
49620-89-C-01 10, and of NEC Corporation for research reported here.

References

Bruner, J. S., 1957, "On perceptual Readiness," Psychological Review, 64:2, pp.123-152. 1
Bylander, T. and Chandrasekaran, B., 1987, "Generic tasks for knowledge based

reasoning; the "right" level of abstraction for knowledge acquisition,"
International Journal of Man-Machine Studies, 26, 231-243. i

Chandrasekaran, B., 1986, "Generic tasks in knowledge-based reasoning: High level
building blocks for expert system design" IEEE Expert, 1, pp. 23-30.

Chandrasekaran, B., 1987, "Towards a functional architecture for intelligence based on I
generic information processing tasks" Invited talk, Proceedings of the

International Joint Conference on Artificial Intelligence, UCAI
Chandrasekaran, B. and Goel, A., 1988, "From numbers to symbols to knowledge I

structures: Pattern Recognition and Artificial Intelligence perspectives on the
classification task," IEEE Trans. Systems, Man and Cybernetics, Vol. 18,
No. 3, May/June 1988, pg. 415-424.

Chandrasekaran, B., Goel, A. and Allemang, D., 1989, "Connectionism and information
processing abstractions: the message still counts more than the medium,"
A/ magazine, 9:4, pp. 24-34, 1989.

Chandrasekaran, B., Tanner, M., and Josephson, J.,1989,"Explaining control strategies in
problem solving," IEEE Expert, 4, pp. 9-24.

Chandrasekaran, B., 1990, "Design problem solving: A task ana:y.,s," Al Magazine, 9:1, Ii
pp. 9-17.

Chandrasekaran, B., and Johnson, T. R., 1993, "Generic tasks and task structures:
History, critique and new directions," in J-M. David, J-P. Krivine and R. II
Simmons, Editors, Second Generation Expert Sysms, Berlin: Springer Verlag.

"75

I B. Chandrasekaran, J. P_ Josephson and S. G. Josephson

Charniak, E., and McDermott, D.,1985, Introduction to Artificial Intelligence, Reading,
MA: Addison-Wesley. p.557;

if Charniak, E., 1986, "A Neat Theory of Marker Passing," in Proceedings of AAAI-86,
Volume 1, pp. 584-588, AAAI, Morgan Kaufmann, August.

Dasigi, V. R., 1988, Word Sense Disambiguation in Descriptive Text Interpretation: A
dual-route Parsimonious Covering Model. PhD thesis, University of Maryland,
College Park.

Fodor, J., 1983, The Modularity of Mind, Bradford Book, MIT press.fGregory, R. L., 1987, "Perceptions as Hypotheses," in Richard L. Gregory, editor, The
Oxford Companion to the Mind,, Oxford University Press, pp. 608-611.

Hobbs, J. R., Stickel, M., Martin, P., and EdwardsD.,1988, "Interpretation as
Abduction" in Proc. 26th Annual Meeting of the Assoc.for Computational
Linguistics, Buffalo, NY, pp. 95-103.

Josephson, J. R.,1982, Explanation and Induction, PhD thesis, The Ohio State
University, Columbus, Ohio. pp. 87-94.

Josephson, J. and Josephson,S., 1994, Editors, Abductive Inference: Computation,
Philosophy, Technology, Cambridge University Press, 1994, (forthcoming)

Kant, I. ,1787, Critique of Pure Reason, St Martin Press, (1968), New York, tr. Norman
Kemp Smith.

SLaird, J.E. , Newell, A. and Rosenbloom, P.S., 1987," SOAR: An architecture for
general intelligence," Artificial Intelligence, 33, pp 1-64.

Lesser, V.R., Fennell, L.D., Erman, and Reddy, R.D., 1975, "Te Hearsay I speech
[|understanding system" IEEE Transactions on Acoustics, Speech and Signal
I Processing, ASSP-23, pp. 11-24.

Livingstone, M. and Hubel, D.,1988, "Segregation of form, color, movement, and depth:
Anatomy, physiology, and perception," Science, 240, May.

Marcus, S. and McCermott, J. 1989. "Salt:A knowledge acquisition tool for propose-and-
revise systems," Artificial intelligence, 39, pp. 1-37.

I Marr, D.,1982, Vision, W.H. Freeman and Company, New York.
Massaro, D.W., 1987, Speech Perception by Ear and Eye: A Paradigm for Psychological

Inquiry, Lawrence Erlbaum Associates, New Jersey, p. 83.
Newell, A., 1980, "Reasoning, problem solving and decision processes: The problem

space as a fundamental category" in R. Nickerson, Editor, Attention and
performance, VIII, Lawrence Erlbaum Associates, New Jersey, pp. 693-718.

Newell, A.,1981, '"he Knowledge Level," Al Magazine, 2:2, pp. 1-64.
Peirce, C.S. 1902, "Perceptual Judgements" reprinted in Buchler, J., editor,

* Philosophical Writings of Peirce, (1955) Dover, pp. 302-305.

* 7
F
!

S • 76

To appear in "Second Generation Expert Systems", edited by Jean-Marc a
Jean-Paul Krivine and Reid Simmons, Springer Verlag.

* Explanation Using Task Structure and Domain
Functional Models

Michael C. Tanner'. Anne M. Keuneke 2 , and B. Chandrasekaran'

Computer Science Department. George Mason University, Fairfax VA 22030. USA
* 2 Computer Science Department. California State University, Chico CA 95929. US'A

I Department of Computer and Information Science, The Ohio State University.
Columbus OR 43210, USA

I Abstract. In this paper we present some of the work and ideas devel-
oped at the Ohio State Laboratory for Al Research on explaining the
behavior of knowledge systems. The first part of the paper prents an
analysis of the explanation problem and the aspects of it that we have
concentrated on (briefly, we are concerned more with the form and con-
tent of the representations than the explanation form or presentation).
Then we describe a generic task-based approach to explanation, includ-
ing relating the explanation to the logical structure of the task. Finally,
we show how causal models of a domain can be used to give explanations
of dianostic decisions.

I Aspects of Explanation

I As described by Chandranekaran, Tanner, and Josephson [8], we can separate
the explanation generation problem in knowledge systems into three top-level
functions: generating the content, being responsive, and interacting with human
users.

Generating an explanation's basic content. Given user queries about & sys-
tem's decisions, we need to generate an information structure containing the
elements needed for an explanation.

Shaping explanations to match user knowledge. It may not be necessary
to communicate all the available explanation content to users. Systems apply
knowledge of user goals, state of knowledge, and the dialog structure to

filter, shape, and organize the output of the above content proce so that
explanations respond to user needs.

Interacting with users. The two preceding functions produce all the informa-
tion needed conceptually and logically for the required explanation. However.
preMstation issues remain; specifically, how an appropriate human-computer
interfasce effectively displays and presents information to users.

Parts o(this paper appeared ins B. Chandrasekalra, M. C. Tanner. and J. L Joseph-
eso, `Explaihiag control stratgie in problem solviag.* IEEE £apev 4(1), pp. 9-24,

199. sad W. C. Tauner and A. M. Keumeke. OThe role of the task structure sad do.
main functional modea,' A IEEE Epert. 6(3),1991. pp. 50-57. Rnsed by peanmion
of IEEE Computer Society.

1 77

)
I

If explanation content is inadequate or inappropriate - no matter how good
theories for responsiveness and interface functions are - then correspondingly
poor explanations will be presented. Thus, generating the correct explanation
content is the central problem in explanation generation. We can break this down
into the following types:

Step explanation. Relating portions of the data in a particular case to the
knowledge for making specific decisions or choices, i.e., explaining the steps
in the solution process.

Strategic explanation. Relating decisions to follow particular lines of reason-
ing to the problem solver's goals.

Task explanation. Relating the system's actions and conclusions to the goals
of the task it performs.

Knowledge justification. Relating conclusions and problem-solving knowl-
edge to other domain knowledge, possibly showing how they were obtained.

These four kinds of explanation are related to the act, or process, of solving
problems. A knowledge system might be aiked questions about many other rel-
evant things, including requests for definition of terms and exam-like questions
that test the system's knowledge. Answers to these questions may or may not
be explanations, as such, but a knowledge system should still be able to produce
them. All of these kinds of explanation correspond to structures that must be
examined when constructing explanations, even though some of the structures I
may not be needed to solve problems in the system's domain.

A Often explanations are produced by introspection, i.e., a program examines
its own knowledge and problem-solving memory to explain itself. Step and strate-
gic explanations are most often done this way. But sometimes explanations are
concocted, i.e., they do not relate to how the decision was actually made, but
independently make decisions plausible. Constructing such post facto justifica-
tions or explanations is necessary when problem solvers have no accem to their
own problem solving records, or when the information contained in those records
is incomprehensible to users. The explanation may argue convincingly that the
answer is correct without actually referring to the derivation proems, just as
mathematical proofs persuade without representing the process by which math-

i ematicians derive theorems. Task explanations and knowledge justifications are
often done this way. Generating explanations of this sort is an interesting prob- I
lem solving process in its own right [23, 391.

2 1uks, Methods and Explanations

In ib setion we give a brief outline of the notion of a task analysis as de-
veloped by Chandrselkaran (31. Explaining a knowledge system's solutions t-
quire, aumong other thinp, showing on one hand how the logical requirements
of the task wee satisfied by the solution and. on the other hand, showing how
the method adopted (the strategy) achieved the task in the probem-solving in-
stance. In principle there may be more than one method for a task. Most knowl-
edge systems have 'hard-wired' specific methods for the tasks. Thus Mycin can

78

t
I

be understood as solving the diagnostic task by the method of heuristic classi-
fication, which in turn performs the subtasks of data analysis, heuristic match.
and refinement (9]. In the generic task (GT) framework, developed at Ohio State.
we have identified a number of task-method combinations that can be used as
building blocks for more complex t:-sks. Thus, for example, the task of diagnosis
is associated with a generic method called abductive assembly, which in turn
sets up a subtask of hypothesis generation. In our GT work, a generic method
called hierarchical classification is proposed for exploring certain types of hy-
pothesis spaces. This in turn sets up subtasks for evaluating hypotheses in the
hierarchy for which a generic method called hierarchical evidence abstraction is
proposed. What we have called GTs are in fact task-method combinations. The
method is particularly appropriate to the task becaue it is commonly used in
many domains for that task and it gives significant computational advantages.
Two of the GTs we have identified are Hierarchical Classification and Design by
Plan Selection and Refinement. 4

Hierarchical Classification
Task: If a hypothesis hierarchy is available, generate hypotheses that match

the data describing a situation.
Method: For each hypothesis, set up a subtask to establish or reject it. If

it is established, test its successors. If it is rejected, it and its successors
are rejected. The top-down control strategy, called Establish-Refine, can
be varied under specific conditions. Bylander and Mittal [2] elaborate on
this simplified account.

Design by Plan Selection and Refinement
Task: Design an object that satisfies certain specifications.
Method: Design is separated into a hierarchy of subdesign problems, mir-

roring the object's component structure. For each node in the hierarchy,
there are plrim for making commitments for some component param-
eters. Each component is designed by choosing a plan, based on some
specifications, which instantiates some design parts and designs further
subcomponents to fill in other parts. We describe this task in more detail
in Sect. 3, but Brown and Chandrasekaran I[] is the definitive reference
on this topic.

Each GT method is explicitly supported by a high-level language that aids knowl-
edge system development by giving the knowledge engineer access to tools tha
work closer to the problem level, not the rule or frame level. However, it may
be necmauy to divide non-trivial problems into subproblems such that each
matcbh some GT. This way of building complex knowledge systems also means
that knowledge engineering environments should provide a tool set rather than
a single tool. Conmequently, some of our recent work has concentrated on devel-
oping the Generic Task Toolset (211.

' The folowing decriptiom differs from descriptions in eamier papers [4], since we have
separated the tauk and the method explictly.

979

In using the GT theory for explanation we need to show how the method-
specific high-level language helps in explicitly and directly generating explana-
tions of strategy at the right level. This is what our early work involved, and is
described in Sect. 3. In general, however, we also need to relate the logical struc-
ture of the task to the strategy employed. Issues involved in this are discussed in
Sect. 4. Then in Sects. 5 and 6 we describe work on justifying problem-solving
knowledge by reference to the more general knowledge on which it is based.

3 Generic Tasks and Explanation - An Example

GTs make strategic explanation possible for systems built using this theory [8].
Additionally, any explanation facility should be abJe to explain the steps a prob-
lem solver takes in reaching a solution. In this section we describe MPA (a Mis-
sion Planning Assistant) [18], a GT program capable of explaining its problem-
solving steps and its strategy. We transferred the techniques developed on this
system to the Generic Task Toolset [21] so that any system built using those
tools could explain its steps and strategy.

MPA is a GT implementation of Knobs (13], a system that plans a particular
kind of Air Force mission.' The type of planning required can be viewed as de-
sign, i.e., designing the plan. So we used the GT of Design by Plan Selection and
Refinement, and implemented MPA using the generic task tool DSPL (Design
Specialists and Plans Language) [I].

3.1 Overview of DSPL

A design problem solver in DSPL is a hierarchy of specialists, each responsible for
a specific design portion (see Fig. I). Specialists higher up in the hierarchy deal
with the more-general aspects of devices being designed, while specialists lower
in the hierarchy design more-specific subportions. The organization of the spe-
cialists, and the specific content of each, is intended to capture design expertise
in the problem domain.

Each specialist contains design knowledge necessary to accomplish a portion
of the design (see Fig. 2). Each specialist has several types of knowledge but,
for simplicity, we will describe only three. First, explicit design plans in each
specialist encode sequences of possible actions to successfully complete that spe-
cialist's twk. The plans consist of design steps, each of which chooses a value
for mae parameter of the design. Second. specialists have design plan sponsors
associuted with each plan to determine that plan's appropriateness in the run-
time ante . And third, each specialist has a design plan skctor to examine
runtime judgmeuns of sponsors and to determine the plan most appropriate to
the current problem context.

In a DSPL system, control proceeds from the topmost design specialist to the
lowest. Each specialist selects a plan appropriate to the problem's requirements.

'MPA actually impiemauts a very simplilA version of the problem.

8 I

l- lll I IN - !IIM I ! J!llll i

I
I
I
I
I OCA

Base Aircraft

Conf. Conf.
F-Ill F-4 A-10

SFIg. 1. Organuiation of MPA, a DSPL Problem Solver

I

i"cfaut A-b .10 A-10
Sponsor - Plan

Default F-4 F-4
Selector Sponsor Plan

SF-Ili F-Ill
Sponor PlIM

I Fig. 2. I•mad a DSPL Special

81

The system executes plans by performing design actions that the plan specifies
(which may include computing and assigning specific values to device attributes,
checking constraints, or invoking subspecialists to complete another portion of
the design).

3.2 Description of MPA

In MPA the top-level specialist is OCA (for Offensive Counter Air, the type
of mission MPA works on), which has design plans for producing the mission
plan. Subcomponents of the mission are the Base and the Aircraft (see Fig. I).
The Base specialist chooses the air base (actually a list of bases) using the
requirements of the mission. The Aircraft specialist chooses an aircraft type,
and then configures the aircraft for the mission using subspecialists.

As an example of a specialist, consider Aircraft (shown in Fig. 2). It contains a
selector, in this case it is the default selector built into DSPL. The default selector
simply chooses the best plan, according to ratings assigned by the sponsors, and
if there are no good plans it fails.6 Aircraft also contains three sponsors, one for
each of its plans. It has a plan for each aircraft type (A-10, F-4, and F-Ill).

The DSPL code for Aircraft's A-l0 Plan is given in Fig. 3. MPA decides
whether A-10 is the appropriate aircraft type for the mission using its sponsor-
selector mechanism described above. If A-10 is appropriate, this plan is executed.
The BODY contains a list of the steps in the plan. It first notes the aircraft type,
then chooses a squadron. The base is determined from the chosen squadron and
then the range to the target is qomputed. Finally, the aircraft is configured for
the mission (bomb and fuel load) by calling the subepecialist Configure-A-tO.

(PLAN
(NAME A-10)
(SPONSOR A- 10-Sponsor)
(PURPOSZ "coasiderinag the feasibility of an A-1O for the mission')
(AC8ZEE '"chose an A-10 for the sission'')
(SOOT

ssipAircraf tType
ChooeSqujalron

"Asignease

(MUM CoemlipWe-A-l0)))

Fig.& KPA's A-10 PIas

One o(fthe sup, C€oosdSquadroa. is shown in Fig. 4. Steop in DSPL set the
value of a single deiap attribute, an the step first identifies the attribute it sets

s DSPL contains a wclhasinm, not described here. for dealing with failares. Brows
and Ciaadraseduaa [(1 psv•e the details.

81
82

II

I
(SQUAD). The DSPL functions KB-FETCH and KB-STORE fetch aid store attribute
values of the design. The KNOWN section of the body is a facility for defining local
variables for known attributes. REPLY contains the main work of the step. In
this case the REPLY simply stores an attribute value but, in general, it could do
more work to decide on the value. The Lisp function squad-select implements
the expert's method of choosing a squadron given the aircraft type and bases
available. Since this is done in a Lisp function, it will not be easily explainable.
A better implementation of MPA would include this decision process in DSPL.
rather than in Lisp.

(STEP
(NME Choos*Squadron)
(ATTRIBUTr-IAim SQUAD)
(PURPOSE "selecting a squadron for the mission'')
(ACHIEVED 'selection of as- the squadron for the mission'')
(BODY

(KNOWl
plane (KB-FETCH AIRCRAFT)
base-list (KB-FETCH DASELIST))

(REPLY
(KU-STORE SQUAD (squad-select plane base-list))

Fig. 4. MPA's ChoooeSquadron StepI
In the end, MPA produces a list of attributes for the mission with the values

it decided upon. For example:

Aircraft Type A-10
Number of Aircraft 4
Squadron 1I1TFW
Airbase Sembach

This list is actually a menu, from which users can select any value and ask MPA
to explain how that value was decided.

33 Expla at"io in MPA

We implemented explanation in M PA on the organizing principle that the agent
I that makes a decision is responsible for explaining it. Foe out purpome. we con-

sider the things we have described - sp.cialists, selectors, sponsors, plans, and
steps (Vitp. 2-4) - to be problem-solving agents in DSPL. The current implemen-
tation of MPA contains neatly 100 of these agents. which call upon each other
during the pobhon-olving process. All of these agents have well-dMlod roles,

8
I

| 83

' - -. b....----

)
I

so the system can explain an agent's decisions in terms of the goals of its calling
agent, the agent's own role in the pursuit of those goals, and the roles of other
agents it called upon. To do this we added slots called PURPOSI0 and ACIZYIED
to the agent definitions in DSPL to hold text strings for describing the agents'
goals. Then to explain how MPA decided on a particular attribute value, the
explanation module puts these strings together in an order that depends on the
runtime context in which the decision was made. Given such an explanation I
users can select any of the other agents and ask for further elaboration from
them.

Suppose a user selected the value "118TFW" of the attribute "Unit". The
only question users can ask MPA, the only explanation it can give, is a form I
of "How was it decided?" Thus, the user's selection in this case implicitly asks,
"How was it decided that the Unit should be II8TFW." The explanation is
given in Fig. 5. This decision was made by the ChooseSquadroz step so the !
explanation comes from that agent. The explanation first gives the purpose of
the calling agent (shown in italics), which comes from the A-10 plan in this case.
Then it gives the values of the local variables. Finally, it gives the value it chose
for its attribute.

The context o(considering Sk feesibilWit of an A.-O for the mieion determined that: j
- plane was.A-10
- base-list was Rmastein. Bhtburg, Sembach

So 118TFW was an appropriate choice for Unit. J
Fig. S. Explanaion for a Step

This explanation may be unsatisfying. A better explanation in this case might
be:

Assuming that we awe to use A-IOs and that the only bases available ane
Ramstein, Bitburg, and Sembach, then I I8TFW is the only unit that
flies A-ICs out of thee bases.

Some of the difference between this and Fig. 5 is the quality of the English text.
The only content difference, and content has been our focus, is in connecting
the i pam (value of local variables) to the final decision. MPA could do
this bette if the fal decision were made using DSPL rather than the Lisp
functis squdmi-soletS. A slightly improved version of the explanation would
appew nm ig. S. Becaimas the explanation module is eantially just translating
DSPL code into text, the quality of the programming affects the quality of the
explaatuia. This i a litt bit undesirable but alm unavoidable in a system that
ha to e*plais itW m g only its own problem-solving knowledge.

Users can elct my of the local variables given in the explanation (i.e.,
plaue mWd Mae-ies) f.o further elaboration. For exarnple, to Aind out why 11
plane is A-10. This would reult in getting an explanation from another step,

8

84 I

I
I

The context of considering the fea•bil•ly of an A- O0 for the musion determined that:

- plane was A-10
- bane-lUt was Rawatein, Bltburg, Sembach
- units-with-AlO was 118TFW

So 118TFW was an appropriate choice for Unit.

Fig. 6. Improved Explanation for a StepI
since attribute values are determined by steps. Or users can select the calling
agent for further explanation. This would result in an explanation from the A-10
plan, shown in Fig. 7. As with the step explanation, the context comes from the
calling agent, the Aircraft specialist here. The bulleted items are the purposes
from the called agents. Additionally, the explanation shows where the agent
was in its procedure. In this explanation, since the user arrived here from the
ChooseSquadron step, the plan had completed the AssignAircraft~ype step,
was in the process of doing the ChooseSqmadron step, and had yet to do the
LAseiglase and GetRange steps and complete the configuration.

In the context of selecting an appropriate aiurruft for the. mission I:

I - Assigned A-10 as the aircraft type.

I was in the process of:
* - Selecting a squadrom for the misuion.

and was about to do to Wowing:
- Select a base foe the mission.
- Determine the ramn for the mission.
- Choe a cofigura•ion for the A-10 om this mision.

FIg. ?. Explanation for a Plan

The expilaations shown het atre generated from explanation templates, Each
agent type has a standard reprme-lation form from which we derived its explb-
nation template. A simplified version of the standard form for plas is shown in
Fig. 8 (the simplification is that in addition to steps, pimm can contain USSIGn
calk to eubspeclias as in Fig. 3). Figure 9 shows a covespodingly simplified
eplaation template flo plans, asumming that it is entered from step i. Thus, a
piur's expsaaiom awe put together out of the goals of its celling specialist and
tde goas 0. the ltepe it calls.

Puin expma•ions together out of 'canned* text, the way MPA does, is
nt a very mephb cated method of text generation. Homv, the important

poin hefe in that the rae of the varous agents - apecalite, powe. mepe etc. -
mad dtir relatsiolips define the kinds of things tha cam be said and bow thes
te V to ptot to make smnble explanations Them tiu and melationhips

8
85

I.

- -S

(PUSA
(NAME (plan name))
(SPOISOR (sponsor name))
(PURPOSE (purpose string))
(ACHIEVED (achieved string))
(BODT

(step 1)

(step e)

(step s)))

Fig. 8. Standard Plan Reprmantatioa

TA the context of (purpose of containing specialist) I:

- (achieved string from step 1)

- (achieved string from step s - 1)

I wm in the process of:

- (purpose string from step s)

and was about to do to following:

- (purpose string from step . + I)

- (purpose string fror. step a)

Fig.9. Plan Explanation Template

are defined by the GT, in this case Design by Plan Selecsion and Refinement.
We have more work to do on developing a taxonomy of pNEPOSW foe the various
agents, and then showing how to use the taxonomy for explaining. However,
our aim for MPA was to demonstrate that GT programs provide the structures
need to geerate explanaions of strategy and seps.

4 Explanation Based on the Logical Structure of a Task

GTs combine taid with appropriate methods, which enables explanations to
show how strateic denm s combine to achieve the task's mawr goals. Bow-
ever, as descibed by Chandrekarnm [31 (se Sec. 3). fotr mny tak there ane

. rmany possible methods. To proery e -plain how a progrmn's knowledep, srat-
ea, behavior, and eoncldusm relate to its problem-slving task, we need to

864

I
!

separate the task's requirements from those of the methods that perform it. For
example. one diagnostic goal is to find a disease that explains the symptoms.
One method would produce explanatory hypotheses using disease hierarchies,
another would produce them using causal models. Each method imposes its own
requirements and has a distinctive behavior, but both serve the same diagnostic
subgoal - generating explanatory hypotheses. An explanation should relate their
behavior to their subgoal in spite of the detailed differences between them. So it
is important to identify tasks' logical structure, independent of particular solu-
tion methods, to be used in designing explanation components for systems that
perform them. In this section we describe Tanner's work on task explanation inf diagnosis [361.

4.1 The Logical Structure of Diagnosis

I Diagnosis is usually considered an abduction problem [12, 17, 20, 28, 29, 30].
That is, the task is to find a disease, or set of diseases, that best explains the
symptoms. Accordingly, a diagnostic conclusion is supported, perhaps implicitly,

Sby the following argument:

- There is a principal complaint. i.e., a collection of symptoms that sets the
diagnostic problem.

- There are a number of diagnostic hypotheses that might explain the principal
complaint.

- Some of the diagnostic hypotheses can be ruled out because they are: (1)
unable to explain the principal complaint in this instance, or (2) implausible
independent of what they might explain.

- The diagnostic conclusion is the best of the plausible hypotheses that are
capable of explaining the principal complaint.

This argument form is the logical structure of the diagnostic task. It can be
thought of as a means of justifying diagnoses. As such, it suggests specific ways

Sa diagnostic conclusion might be wrong.
Suppose the diagnostic conclusion turns out to be wrong. What happened to

the true answer? That is, why did the true, or correct, amwer noL turn out to be
the bat explanation? Based on the logical structure of diagnosis. given above.
the diagnostic conclusion can only be wrong for one or more of the following

1. Them is something wrong with the principal complaint. Either it is (1) not
really present or dos not need to be explained., or (2) incomplete, there are
othw things that should be explained by the diagnostic conclusion.

- 2. The true answer was not on the list of diagnostic hypotheses thought to have
the potential of explaining the principal complaint.

3. Ther is an error in ruling out.
(a) The true answer was ruled out. It ws mistakenly thought (1) to be

implausible or (2) not to explain the data.

I
I

87

i .4W

(b) The wrong answer (the one given) was not ruled out. It was mistakenly
thought (1) to be plausible or (2) to explain the data.

4. There is an error in choosing the best of the plausible explanations. Either
(1) the wrong answer appears to be better than it is, or (2) the true answer
appears to be worse than it is.

The source of these errors might be found in either missing or faulty knowledge
as well as in various problems with the data itself.

Many users' questions can be interpreted as attempts to ensure that the
conclusion is correct. Thus, corresponding to each source of potential error there
is a class of questions, each seeking reassurance that a particular kind of error
was not made. This analysis tells us that if we build a knowledge-based system
and claim it does diagnosis, we can expect it ta be asked the following kinds of
questions.

1. Is the principal complaint really present or abnormal?
2. Does the principal complaint contain all the important data?
3. Was a broad enough set of explanatory hypotheses considered?
4. Has some hypothesis been incorrectly ruled out?
5. Could some hypothesis explain a finding that the system thought could not?
6. Was some hypothesis not ruled out that should have been?
7. Is it possible that the hypotheses in the diagnostic conclusion do not really

explain the findings?
8. Might the hypotheses in the diagnostic conclusion be rated too high?
9. Has some hypothesis been underrated?

Furthermore, these questions expres the only reasonable concerns that arise
solely because it is a diagosnis system. We are not suggesting that all questions
will be in exactly one of thes classes, some may refer to many of these concerns,
others are not specifically about diagnosis.

4.2 Using the Logical Structurs for Explanation

Any diagnostic system will have some means of achieving the diagnostic goals
specified in the logical structure given above. Otherwise it will fail, in some re-
spect, to be a diagnostic system. The diagnostic question classes are derived
from the diagnostic goab, so the first step in building an explanation component
is to map the diagnostic question classes onto the program. That is, each quas-
tics lam (my, "Is it posible tha the hypotheses in the diagnostic conclusion
do aot slay explain the findinp') is mapped onto the the par of the system

, •respo for aehieving the corresponding goal (in the example, the part that
determines the symptoms a diagnostic hypothesis explains). This way the ques-
tions can be anw•wed by the part of the system that mede the relev decisin I
to explain how the decision helps achieve the goWl. In order for this to work, the
0explWner needs a way of map•ping ses' questions into the appropriate question -
classes.

Be..-

f
I

User: What antibody in the conclusion explains the following test result:

(164 Coombs 3+)

Red: The finding:

(164 Coombs 3+)

is explained by:

antiS

Fig. 10. An Explanation From RED

Let us briefly consider an example from a diagnostic system called Red.
In order to give blood to patierts who need it, a hospital blood bank must
select compatible donor blood. A part of this decision involves finding out what
antibodies a patient has. Red is a system that aids in this antibody-identification
problem. This is a kind of diagnostic problem since the data is a set of test results
to be explained and the antibodies are used to explain them. One type of question
that people ask of Red is what antibody in Red's conclusion explains a particular
test result. This question is an instance of the question clan defined by: "Is it
possible that the hypotheses in the diagnostic conclusion do not really explain
the findings?" This is derived from the potential error that the answer given
does not actually explain the data. This, in turn, is derived from the diagnostic
goal of explaining the data. So the question ("What explains a particular test
result?.) is directed to the component of Red that chooses antibodies to explain
particular elements of data. It produces an explanation such as the one in Fig. 10.I The "(184 Coombe 3+)" is the notation for a test result and "antiS" is shorthand
for "antibody to the S antigen'. This process of mapping the question to the part
of the system that can answer it is not done automatically in Red. The logical
structure of diagnosis was used in building Red's explanation component, but
the mapping is hard-coded in the program. Tanner [36] describes explanation for
Red in more detail while Red itself was fully reported by Josephson, et al. (201

I The logical structure of diagnosis presented here is a common view of the
diagnostic task f 12, 17, 20, 28, 29, 30). Not all approaches to diagnosis will share
this view. In fact, there is one common competing view - diagnosis as description,
i.e., the goal of diagnosis is to describe the patient's state, not to find a cause
for the symptom. But if uuers and systems agree to a logical structure, it can
be used to develop explanation for diagnosis in the manner we describe. The
details will change if the model changes, but the method, and the idea, of using
the logical structure to develop explanations remains.

S Knowledge Justification: Relating Problem Solving to
Causal Models

The inteoation and use of causal models in compiled problem-solving system
has become increamingly prevalent. Xplain was probably the fist syu&~m to pro-

89

I

vide explanations of problem-solving knowledge by showing how it was obtained
by compilation from other knowledge about the domain (26, 35]. Our work on
functional representations (FR) (31] is similar in showing how to compile diag-
nostic programs from functional representations of mechanical devices. Following
on this, Keuneke's work (23] showed how to use FR for justifying diagnostic con-
clusions, which we describe in this section.

5.1 Background

Methods that carry out problem-solving tasks need knowledge of certain kinds
and in particular forms. For example, establish-refine, a method for hierarchical
classification, requires knowledge relating descriptions of situations to descrip-
tions of classes (see Sect. 2). If knowledge is not available in this form, it must
be derived from some other knowledge. We refer to this derivation process as
compilation (31, 35, 15], and to knowledge in the desired form as compiled knowl-
edge (7]. The "other knowledge" has sometimes been called deep knowledge, but
it is not necessarily deeper or better, only less compiled relative to the method
that needs it. The compiled knowledge can be justified by referring to the knowl-
edge from which it was compiled.

As with any compiled knowledge, compiled diagnostic knowledge can be justi-
fied by referring to the compilation process. Diagnosis also admits an interesting
variation on this type of justification. If a system for diagnosing faults in a me-
chanical device is compiled from a causal model of the device, then its diagnostic
conclusions can be related to observations using the causal model. This justi-
fies the conclusion and validates the compiled knowledge that produced it. The
causal model could be used to perform diagnosis, and systems have been built
that do this (11, 27, 38], but for complex devices the large amount of causal
information makes the diagnostic task very difficult. In most diagnostic systems,
the causal knowledge is compiled for greater expertise and optimum diagnostic
performance. Then, if a causal story can be put together, using the hypothesized
diagnostic answer as a focus, we get the advantages of both worlds: the compu-
tational benefits of compiled knowledge to obtain the diagnostic a=wer, as well
as the causal model to validat, it.

In a diagnostic context, given the symptoms and the diagnostic conclusion,
Keuneke showed how to ues a causal model to justify the diagnosis at various
levels of dsta. In many situations a similar method will work to justify individ-
ual ue in Oh knowledge boae. Wick [39] developed a related idea: justifying
a coadoim in terms of the standard arguments used by domain experts. Both
Wick ad out work using FR produce justifications by reference to knowledge
not eaud, perhaps os eve needed, to produce the solution. However, one impor-
tant difference is that justikstions come from knowledge that, in principle, could
be used to compile diagnostic problem solvers while Wick is not committed to
any particulw relaionship between justification knowledge and problem-solving
knowledge. 'The intent of Keumeke's [23] research was to continue dors in
the development of a device- and domain-independent representation capable of

9o

I
I
I modeling the core aspects of device understanding; the extended goal is a cogni-

tive model of device understanding. Although this work was driven by the task
of explanation, the representation was designed to provide the basic primitives

I and organization for a variety of problem-solving tasks.

The Functional Representation. Initial efforts to generate causal justifica-
tions [5, 6, 18, 24] focused on enhancing Sembugamoorthy and Chandrasekaran's

SFR [31] to provide a representation with the necessary organization and primitives'.
Functional Representation is a representational scheme for the functions and

expected behavior of a device. FR represents knowledge about devices in terms
of the functions that the entire device is supposed to achieve and also of thef - sequence of causal interactions among components that lead to achievement of
the functions. FR takes a top-down approach to representing a device, in contrast
to the bottom-up approach of behavior-oriented knowledge representation and
reasoning schemes (10, 14]. In FR, the function of the overall device is described
first and the behavior of each component (its causal process) is described in
terms of how it contributes to the function'. Figures 11 and 12 illustrate the

f top-level representation of a chemical processing plant.
I In this representation, a device's function is its intended purpose. Functions

describe a device's goals at the device level. For example, the function of a
-j chemical processing plant is to produce a certain product. It has components for

supplying the reactants, stirring the substance, extracting the product, and so
forth. But generating the product is a function of the device as a whole.

Functions are achieved by beAvsirs or causa• procuaes. In the chemicai pro-
Sceasing plant example, the substance is produced by the causal sequence of (1)
i I input of the reactants into the reaction vessel, (2) allowing reactant contact, and

then (3) extracting the product from the reaction vessel. In short, the functions
are mAst is expected; the behaviors are how this expected result is attained. InI FR, behaviors are represented as causal sequences of transitions between partial
states or predicates (e.g., (present reactants rrveseel)).

The device is represented at various levels. The topmost level describes the
functioning of the device by identifying which components and more detailed
causal procesmes am responsible for bringing about the varikou state transitions.
If a transition is achieved using a function of a component, the next level de-

SI scribes the functioning of this component in terms of the roles of its subcom-
ponents, and so on. Ultimately, either by tracing through more detailed causal
Procsmes or by expanding the causal processes of functional components, all
the finction of a device can be related to its structure and the function of the
somenpmosw within this structure.

(bsemdaig the Fmetioaal Ripritsetatiom. Early xplanation work (5] sim-
ply wued the ,FR as a tool to answer questions such as: (1) Why is this device
SFoe a ma cflmt Swmal trastmeat of the repreatatiam, m (11i
0 A fuactica's eased poc is epresated is the machine by its causal proens de-

! ,P (CPO).

IL
!

19

raccancJIP lied

PressureCtrl r

ex~racti~a airauw) @aCzolpa.wu sg

"-&s"- AL~reefiftmemin selu. aegom

blaseuenl

C002 ondense provldocaooan:
hoactransfor

Ulquid~ancCarl
raerievwZ14uid

Fig. 11. Functiomal Coupoueut Hierarchy

needed? (2) What subcomponents does this device require? (3) What does this
function accomplish? (4) Why or where is this function used in the device? (5)
How is this function achieved?

Later, enhancements to the FR allowed the representation of state and behav-
ior abstractions (25, 231. Abstract schema specifications. and the ability to make
transitions between abstraction levels, is useful for providing different levels of
explanation.

For example, suppose there exists a solid/liquid mixture in which action is
being taken to keep the solid from the bottom of the container. One might
witnes the following causal loop:

by stirring

(solid falls) (solid rises)

by gravity

Rons an obse we, coulld follow the loop any number of times, but somewhere
one takes a conceptual jump and identifies the dynamic proces (solid fall, solid
rime, solid fal, solid riese...) AS a Asks at a different behavior&[level, i.e., identi-
fication of the peacm state (soid suspended). In doing so, one is identifying a
new phenomenon; the observer is packaging a process and seeing it from a higher

92

I

amounc acid below. c•r.eoidj

a(pregt reacat s rrO@(I:.UI:ML3[O81

--- (occurd c on weaa a.. i

(amount heat rxvessi Increased) (present acid rxv~ssel)

I I i:: "e~'.t~eaedeim~e j .I eim lzso~I e

(condition r'veesel su ftcloent (present product extern"LContoaner!

FIX. 12. CPD oxidation for Function produce.acid of a Chemical Processing Plant

conceptual viewpoint. These types of conceptual transitions are commonplace in
one's understanding of a device's behavior - especially in cyclic or repeated be-
haviors. Nevertheless, past methods of behavior abstraction (detail suppression)
did not explicitly address the representation of such phenomenon.

For researchers interested in building models of devices solely to predict be-
havior at a given level of detail, these abstractions will not be helpful. Instead,
these abstractions provide the ability to tell a higher level story. Prediction is
not driven solely by constraints of structure and low-level processes, but can be
enriched and focused by knowledge of abstract processes and the inferences they
dictate.

Additional enhancements include establishing a taxonomy of function types.
Each function type indicates different procedures for simulation, different func-
tional capabilities, different expectations, and thus different knowledge specifi-
cations for representation and explanation. Function types include:

I. ToMake: achieves a specific partial state
2. ToMaintain: achieves and sustains a desired state
3. ToPrevent: keeps a system out of an undesirable state
4. ToControLh gives a system power to regulate changes of state via a known

relationship.
Moae deails on the knowledge distinguishing each type, explicit specifications of
the function type, and the information processing distinctions each type makes

S~is provided in [23, 221.

STi structur of the functional representation, organized around functional

packa"e, provides focus through which simulation and the identification of/struc-
tural cause can be determined (i.e.. given changes in function, what changes in
structure could be hypothesized to account for them?). Since, at some level, most
problem-solving tasks dealing with devices are concerned with either the achieve-
meat of function, or consequence of the failure to achieve function, a functional

description and reasoning power prove useful. The use of the representation in

j

F
93

V

diagnosis seems especially appropriate since diagnosis centers around determin-
ing the change in structure that resulted in some malfunction.

6 Causal Explanation: The Problem Statement

To illustrate the use of the representation, we pose the following problem: Given
a set of observations and a diagnostic hypothesis, attempt to construct an ex-
planation in the form of a causal story which starts with a diagnostic hypothesis
and ends with one or more of the observations to be explained. In the follow-
ing, we examine how a functional representation can be used for this purpose.
Technical definitions of a few terms may be useful:

Observations: observable states, including a subset which are malfunctions
of the device subsystems or components. The following distinctions about
observations are useful:

- Symptoms: abnormal states which are indicative of malfunctions and
trigger the diagnostic proce., e.g., specification of a drop from normal
pressure.

- Malfunctions: observations which are malfunctions, e.g., specification
of a faulty pressure regulator. Malfunction observations are generally
also symptoms.

- Observable states which provide information about the device but do not
directly correspond to abnormalities, e.g., specification of temperature
or premure readings. Typically in a complex system, a large number
of observations are used in the diagnostic process which provide focus i
for the problem-solving but do not necessarily indicate problems (e.g.,
sensor readings).

Diagnostic Hypothesesm the set of malfunctioning components or missing
(but expected) relationships between components. Each in the latter should I
sooner or later, manifest itself as the malfunction of a subsystem within
which the components lie.

Causal Explanation: Normally one expects a diagnosis to causally "explain" 1
the symptoms, even though in general the diagnosis actually should explain
all the observations. The explanation provided here takes any given set of
observations to be explained and tries to propose a causal path from the
diagnostic hypothesis to these observations.

The explanation sought can be formally stated as follows:

diag •stic hypothesis-- 1 . - , ... z.v
wheo ft, st is either (1) an internal state which is causally relevant in produc-
ing an abarvatim, but is itself not a malfunction. (2) a component or subsystemr
malfunction, or (3) an observaticn at the device-level. The explanation system
developed in this work pnrduce explanion chains where the menbers ae lim-
ited to the lag two, i.e., nudfunctionsor obeervations, seale the causally relevant
internal stat has bee= provided explicitly as a stat that needs to be explained, 11
i.e., w input to the casual explaation system.

941

1* 6.1 Generating the Malfuction Causal Chain

In the same way a functional representation provides an organization to allow
simulation of how ezpecled functionalities are achieved, it can also serve as a
backbone to trace the effects of not achieving certain functions - thus identifying
potential malfunctions.

The organization of a functional representation gives both forward and back-
ward reasoning capability, i.e., it can trace from the hypothesized malfunction
to the observed malfunctions and symptoms (forward), or it can trace from ob-

served malfunctions to the hypothesized malfunction (backward). Because both
the observations and the diagnostic hypotheses have been identified once diagno-
sis is complete, the functional representation could potentially be used to perform
either form of control. This section provides an algorithm which demonstrates
the forward simulation potentials.

Specifically, if device A is malfunctioning, then devices which use device A
(say devices B and C) have a high probability of malfunctioning as well. Similarly,
devices which use B and C may malfunction, etc. The malfunction causal chain is
achieved through the following algorithm which has been condensed to illustrate
main points.

1. - Set Observations to the symptoms and malfunctions to be explained,I - Set MalfunctionList to the hypothesized malfunction set provided by the
diagnosis,
- Initialize MalfunctionObject to an individual malfunction in this set (di-
agnosed hypotheses and their relationship to observations are considered
individually)

2. Find all functions which made use of the function which is malfunctioning
(MalfunctionObject), call -this set PossibleMalfunctions,

3. For each element in PouuibleMalfunctions (call the specific function PorMal)
consider the significance of the effect of MalfunctionObject on the function.

- if no effect on PoasMal then remove from PossibleMalfunctions - Mal-
functionObject is not causing future problems. Consider the next element

in PomibleMalfunctions.

- else maintain (Malfunction - Malfunction) explanation chain; Malfunc-
,K tionObject is now known to cause a malfunction to PoesMal. Specifically

MalfunctionObject - PoasMa& is appended to chain. Note that this step
will ultimately place any potential malfunctions in a malfunction chain,
including those which are in the set of Observations. Continue.

4. Check the states in the causal process description of the affected Posible-
Malfunction. Would noncompletion of these states explain may symptom(s)
in ObsrvatioW?

Naoe that iace the esplaaation generatmon mechaamu -as expected fuactionalitim
sad their caveal procims rather thaa all behavior that cold pomibly be imerataed.
&te pesbiem apace i boued sad thus focused.

95
I - a-u -- i mm==,.m u

- if yes, append to ExplainedSymptoms and print the chain which led to
this symptom. Complete the malfunction explanation chain by continu-
ing.

5. Set MalfunctionObject to PosMal. (.MalfunctionObject 4-- PosMal)
6. Repeat process from step 2 until all symptoms are in ExplainedSymptoms

or the top level causal procem description of the device has been reached.
7. The Proem from step I is repeated until all elements of MalfunctionList

have been considered.

Step 2 is easily accomplished through the component hierarchy of the func-
tional representation (example in Sect. 6.2). Step 3 and 4 are more intricate and
involve knowledge of function type and the achievement of the intended causal
processes.

For example, in step 3, to determine the effects of a malfunction on other
functions, one must consider the possible consequences of malfunctioning com-
ponents. In general, the malfunction of a component in a device can cause one
or more of the following three consequences:

NOT Flunction: expected results of the function will not be present. Given
that the malfunction is not producing the expected results within the causal
process, what states in those causal processes will not occur, and will lack of
this functionality cause the malfunctions of functions in which the malfunc-
tioning component was used?

Parameter Out-of-Range: expected results of the function are affected, but
behavior is still accomplished to a limited degree. Sometimes components
may be considered malfunctioning yet can still perform the behavior (or
value of some substance parameter) to the extent needed for future use.

New Behavors: the malfunction results in behaviors and states which were
not those intended for normal functioning.

The determination of whether a proposed malfunction can explain a symp-
tom, step 4 in the explanation algorithm, can be established by a number of
means:

1. Check each state in the causal process description where the malfunctioning
component is used to see if there is a direct match between a symptom and
not achie•n am expected state.

2. Cihek to a if the function which is malfunctioning has an explicit mal-
ftumhcli caums procesm description and if the symptom is included therein.

3. Cbed to e if side effects of the functions causal process description refer

to tan symptom.
4. each in the malfunction causal process description and its pro-

vided clause to m if expected states point to general concepts or generic

CSa. (231 for knowedgp o(f Iction type Sad detail on f actios witih explicit mal-
fuactwo causel pmeeuss.

96

I
classes of behavior (such as leak, flow. continuity) and if the symptom per-
tains to or is explained by such concepts.

5. If the malfunction is a malformation, i.e., the malfunction is described as
a malformation of a particular physical component, perform deep reasoning
(e.g., qualitative physics) to see if malformation could cause the symptom.

The first three are implemented and currently used for the explanation genera-
tion; the means to perform the last two are research in progress.

6.2 Representation of a Chemical Processing Plant

This section provides the output for an example explanation in the domain of
Chemical Processing Plants. Reference to Fig. 11 (in Sect. 5.1) will assist the
reader in following the causal explanation chains given by the algorithm. The
hierarchy in Fig. 11 shows a partial representation of the functional components
with their intended functions (functions are specified under component names).
The top level function, produce. acid 11, is achieved by the causal process oxidatton
shown in Fig. 12. It should be noted that the function hierarchy is generated
given the causal processes used to achieve functions of the functional component.
For example, the Chemical Processing Plant uses the functional components
LiquidFeedSystem, AirFeedSystem, TransferSystem, etc. in the process ozidation
which represents the causal chain used to achieve the function produce.actid; the
TransferSystem uses the functional components AirFeedSystem, MixingSystem,
etc. in its causal process to achieve the function eztrschon, and so on.

The Problem. The Coolant System (identified at the right of Fig. 11) is used
to provide coolant water to a Condenser so that it can be used to transfer heat
from the vapor in the Condenser (see Fig. 13). Suppose the coolant v-ater has
been completely cut off. A diagnostic system has concluded that a malfunc-
tion of the function prouude.coolnl of the Coolant System explains the symp-
toms of NOT (present product external.container) and NOT (temperature rxves-
sel at.threshold). Specifically, MalfunctionObject is {provde.coolant of Coolant
System) and the Obserations to be explained are (NOT (present product exter-
nal.container), NOT (temperaure rxveuel at.threshold)). The system produces
the following three casual stories.

-Ca dsl Stery 1: Generation of Causal Connections. The causal processISpplyRmctants use the functions refrievel/quid and LiqudCoscCtvl, in ad-
dition to the LiquidFeedSystem and AirFeedSystem. The explanation systemIwerages the following:

The UPOG
lOT (prceass product ezte .al -coasaiaer)

I ist ezplataed by the fol2.g•0r thata:

"The acid podeced is a aid. teepthakc Aid.

I

| 97

I
I

NOT provide.coolant causes

malfunction in Condense causing

aalfunct ion in retriovellquid causing
malfunction in LiquidConcCtrl causing
problems in behavior SupplyReactants
which is used in behavior oxidation and

indicates malfunction of the top level
function and results in
1OT (present product ext-oral.container)

The following symptoms are not explained:

NOT (temperature rzvessel at.threshold)

I
(•eamsan vapor VontCeatmr)

(surrounded vapoir coolant)}I • I:-'
(getaerture Vaor decrea..d)

l" WV us am..m•Iem dmS

(coadin..d Vapor caou~dea~z'

!ptroent •iquid condwoer)

Fig. 13. CPD: RenmoweHeal of Functioa Condense f
The idea here is that if the required amount of reactants is not available,

the product is not produced as desired and thus can not be retrieved. The ex-
plan•tion system Senerate this chain by using the following information: Pro-
vid.eveinm* caaused a malfunction in condease because it caused a failure in
condense's behavior. A malhnction in condedse caused a malfunction in i-
Imnesidsfp becaus, its achievement was required to attain the dedired behavior
foe uirieveh•" Rehme/kd caused a malfunction in L edCoecCfrI because
it wasn needed to provide the preconditions for LutdC•mecCr/ and it preceded
the use of LruodCmecCtrl in the behavior SupplyReactants. SupplyRactants
wIN aed in the causal procew Oxidatiom, Fig. 12, to achieve the state (preset
reactants rxvesel). This state was necmary for the completion of the behavior
and thus no-aechievem t here denoto non-achievement of further state in the
behavior, particularly NOT (pmsen product external.container).

oi

I

I
Causal Story 2: The Use of Side Effect Inspection. The explanation sys-
tem continues and finds a causal connection for the second symptom, NOT
(temperature rxveoel at.threshold).

The symptom
NOT (temperature rzvessel at. threshold)
is explained by the following chain:
N0T provide.coolant causes malfunction

Sin condense causing problems in behavior
renovoheat of function cool

Since cool is not a top level function of the chemical procesing plant, the trace
continues until all consequences ate determined.

The symptom
N0T (temperature rzvessel a* t.threshold)
is explained by the follo.ing chain:

NOT provide.coolant causes
malfunction in condense causing
malfunction in cool causing problems
in behavior compensate.oxidation.se

I a notable side effect behavior used in
oxidation and indicates
lOT (temperature rzvessel at.threshold)

The following symptoms are not explained
(present product external.container)

Notice that this explanation identifies that the symptom was observed in a stde
effect behavior (compensation for effects of the reaction) rather than a behavior
of the main functionality (production of acid).

-- The statement of which symptoms are not explained indicates those that
I were not explained in the specific causal chain. A final statement is made when

the system has inapeced all pertinent causal chains (as am in the next causali story).

Causad Stor' 3: Using Subhaction C nections for Causal Focus. The
fAal causal path is achieved via causal connections obtained specifically through

I the knowledg of subfunction& In its specification, the function eztractio, has a
provided came which specifim that the solid acid slurry must have the proper
coanistency so that Now through the extraction tube is possible. The function

i oSehdC..cClrl is presemt in this device for the sole purpose of producing these
I conditions for extrctwsm

"The purpose of SedCoecCtri is to keep the solid suspended and the con-
"r centnaion in the reaction vemi at the proper consistency. In the Condensate-
1 WithdrawalSystem, the retneveaefed function use the Condenser to retrieve

I9
99

-.1

the condensate from the vapor produced. The MixtureLeveiClrI function then
uses a feedback controller to maintain the flow and thus the desired amount of
liquid in the reaction vessel - which ensures that the acid slurry has the proper
consistency. If the liquid is not retrievable, then obviously the condensate flow
cannot be controlled and consistency of the acid in the vesel is not maintained.
The explanation system provides this explanatory story as follows:

One function afLected by provi•o.coolant
is SolidConcCtrl which is a necessar7
subucuntcion of extraction

The symptom
NOT (present product external.container)
is explained by the following chain:
NOT provide.coolant causes
malfunctlion in condense causin.g
malfunction in retrieveliquid causing
malfunction in ixztureLevelCtrl causing
malfunction in SolidConcCtrl causing
malfunction in extraction causing
malfunction in produce.acid causing
lOT (present product external.container)

All symptoms have been explained.

6.3 Discussion

The intrinsic limitations of a functional representation for explanation &rise
from its intrinsic limitations for simulation. The representation use prepackaged
causal proces descriptions which an organized around the expected functions
of a device. Simulations of malfunctioning devices are thus limited to statements
of what expectations re 'anot" occurring.

This limitation effects the capabilities for explan"tion in two significant ways.
Firat, the functional representation is not capable of generating causal stories of
mal•lseamow which interact unlem the device reprmentation has this interaction
expUc* ep -- tad. Similar problom regarding the interaction. of malfunc-
tion wm hn'dianposm 33J. Secondly, *new" behaviors. i.e., behaviors which am
ano those iseaded for normal functioning but which arise due to a change in
device structu•e, could posentially lead to symptoms which cannot be explained
using the functional representation. Current research efforts focus on how a func-
tional organization might be used to determine these new behaviora sequences,
in addition to how conventional nehods of qualitative remoning may be inte-

100

L--- _ _ _

I

I Additional Applications of a Functional Model

The idea of considering how devices work is a generally useful concept which
provides a focus for reasoning about objects. Since goals can be attributed to
many types of objects. a general representational language, focused around func-
tionality. can potentially model an understanding of a variety of object types,
i.e., truly a "device-independent" representation. In addition, the organization
around functions helps to focus a reasoner's attention toward expected goals;
something works like it does because it is meant to achieve a specific purpose.

The practical uses of having a functionally oriented understanding of how some-
thing works can be seen in the following applications:

diagnosis: How something works provides information about what functions to
expect from working models, and thus implicitly knowledge of malfunction-
ing models. This helps to enumerate malfunction modes and to derive what
observable consequences follow for a given malfunction.

learning: In diagnosis, if a hypothesis has been made and a causal chain cannot
i be found that connects the hypothesis to the symptoms, a learning process

could be triggered. Specifically, a diagnosis which cannot be causally con-
nected to the symptoms might cause suspicion, not only about the diagnostic
result, but also about the knowledge used in the diagnostic process. Use of
the malfunction causal explanation capabilities can help explicate erroneous
malfunction hypotheses and aid in pointing to alternatives. [37]

repair/replacement: Knowledge of how a device works indicates knowledge
I of its teleology. Replacement with objects of like teleology can be considered.

design/redesign: Knowledge of what functionalities are desired can point the
designer to necessary components. [16, 191

planning: The representation of plans (as devices) provides an understanding
of how the plan's goals are achieved. (51

determination of optimum use: Knowledge of how a device works can pro-

vide information regarding how to use the device to its maximum potential.
analogy: Organizing knowledge of how one object works provides links for de-

termining how a similar object might operate.
prediction: Knowledge of expected functionalities focuses reasoning for deter-

mining what will happen in a device. (321
samulation Simulation of expected device behavior is useful for problem solv-

ing, in particular, design. [34. 191
explanatimo: Having the knowledge of how something works allows one to sim-

ulate and explain the mechanism, i.e., tutorial purpote.

i a Conclusion

In this paper we have surveyed the work done at the Ohio State Laboratory
for Al Remearch on knowledge systems explanation. We conider the explanation
problem to have throe upects: the explanation content, the form of proenta-
tion, and the manner of presentation. We have concentrated on the explanation

i

101

TI

content, which we see as having four parts: explaining problem-solving steps,
strategy, and task. and justifying knowledge. Most of our work on these has
been guided by GT theory - any task can be accomplished by many different
methods, the combination of a particularly appropriate, domain-independent,
method with a task is called a generic task. GT research has identified several
generic tasks and a knowledge system that uses a generic task can explain its
steps and its strategy, since strategy is an aspect of the method. By combin-
ing generic tasks with a theory of tasks, independent of method, it is possible
to give explanations that show how a system's method achieves the task goals.
Using the functional representation, also developed at the LAIR, to represent
general purpose knowledge in the knowledge system's domain we can justify its 1
problem-solving knowledge by showing how it was derived. Individually, each of
the efforts described here solves a few problems and leaves many issues unatd-
dressed. Taken as a whole, they represent an attempt to explore the wide range
of roles that knowledge plays in explanation - knowledge about tasks, methods
and strategies, system design, background domain knowledge, and memory for
particular problem-solving instances - and the benefits of explicitly representing
these kinds of knowledge.

9 Acknowledgments

This work has been supported by the Air Force Office of Scientific Research
(grant 89-0250), the Defense Advanced Research Projects Agency (contracts
F30602-85-C-0010 and F49620-89-C-0110), and the National Heart Lung and
Blood Institute (grant HL-38776). In addition we would like to thank John
Josephson who led the MPA project and provided insightful comment on the
rest of the work reported here; the other members of the MPA team: Dean
Allemang, Matt DeJongh, Ron Hartung, and Dave Herman; and our friends
and colleagues at the LAIR who have contributed to the ideas presented here
through their work, discussions, and friendship. We also thank Bill Swartout and
Cecil* Paris for their helpful comments on an earlier draft. These individuals do
not necessarily endorse the entire contents of this paper, however. The authors
accept full responsibility for that, including any inadvertent errors.

References

I. Do . D. C.. Caeadramharms. B.: Desig a Problem Solving: Knowledge Structures
and Comml Stratqies. MOqlae Kaufmana, Inc.. Sax Mateo. CA. IM9

2. Sylawldr. T., Mitdal, S.: CSRL: A langue for dassilcatoery pmblem solving aid
uscertaiaty handliag. At Magaine. 74(3):16-7T. August 195

3. Cbaidrasueam. B.: Desip problem solving: a task asalysis. At Magasime.
11(4):39-71, Witst IM

4. Cbamdrassharm. &: Generic taskis i kaowledgs.bamd reasoniag: RWi-vel build-
S iag blocks Wo expert sysstei deiga. IEEE Espert. 1(3).13-30, Full IM58

10-1

1),t .€

S. Chandrawsekarn, B., Josephson, J.. Keuneke, A.: Fanctional representation as.1 basis for explanation generation. Proceedings of IEEE International Conference on
Systems, Man. and Cybernetics, pages T26-731, 1986

6. Chandrasekwasa, B., Josephson. J. R.. Keuneke, A. M., Herman. D.: Building rou-
tine planning systems and explaining their behavior. International Journal of Man-

McieStudies, 30:377-398. 1989
7. Chandrasekaman, B.. Mittal. S.: On deep versus compiled approaches to diagnostic

problem solving. International Journal of Man Machine Studies, 19:425-436, 1983I 8. Chandrasekaran, B., Tanner, M. C., Josephson, J. Rt.: Explaining control strategies
in problem solving. IEEE Expert, 4(l):9-24, Spring 1989

9. Clancey, W. J.: Heuristic classification. Artificial Intelligence. 27(3):289-350, De-
cember 1985

10. Crawford, J., Farquhar, A., Kuipers, B.: QPC: a compiler from physical models
into qualitative differential equations. Proceedings of the 8th National Conference
on Artificial Intelligence, pages 365-372. 1990

11. Davis. R.. Slrobe, H., Hamnacher, W., Wieckert, K.. Shirley, M., Polit, S.: Diagnosis
based on description of structure and function. Proceedings of the 2nd National
Conference on Artificial Intelligence, pages 137-142, Pittsburgh, PA, 1982

12. del~leer, 3., William.s B. C.: Diagnosing multiple faults. Artificial Intelligence,
32(l):97-130, April 1987

13. Engelman. C., Millen, J. K., Scatt, E. A.: Knobs: An. Integrated Al Interactive
Planning Architecture. Technical Report DSR-83.162, The MITRE -Corporation,
Bedford, MA, 1983

14. Falhenhainer, B., Forbes, K.: Setting up large-scale qualitative models. Proceeing.
of the 7th National Conference on Artificial Intelligence, pages 301-M0, 1988

A15. Goel, A.: Knowledge compilation: a symposium. IEEE Expert, 6(2):71-73, April
1991

16. Gone, A., Chaadrasekmasan B.: Functional representation of designs and redesign
problem solving. Proceeings of the 11th International Joint Conference on Arti-
ficial Intelligence. 1989

17. Harvey, A. M., Bordley, 3. 111: Differential Diagnosis, the Interpretation of Clinical
Evidence. W. B. Saunders, Philadelphia. 1972

18. Herman, D.. Keuneke, A., Tanner, M. C., Hartung, ft., Josephson, 3.: MPA: A
minions planning assitant in the Knobs domain. Expert Systems: Proceedings of
a Workshop, pages 103-116, Pacific Grove, CA, April 16-18 1986

19. Iwasahi Y., Cliandrawkhasan B.: Design verification through function- and
* - behavior-oriented reproesetations: bridging the gap between function and behavior.

Proceedimp of the Confnesece on Artificial Intelligence in Desip. 1952
26 Jiniphoon, JR.L, Chandmasekwara B.. Smith, J.W. Jr., Tanner, M. C.: A mecha-

nim Sr fenuing composite explanatory hypotheses. IEEE Transactions on Syn-
tin, Use. and Cybernetics, SMC-17(3)-445-454. May/Juse 1987

21. Joep~hso., J. IL, Sietter.. D.. Fox. R.. Oblinger, D., Welch A., Northrop, G.; In-
temssda Gmawk Twik Toolset: Falser Release 10., Introduction &and User's guide.
Ilcmshical Repornt 86-JJ-FAFNER. Lab. for At Rewearch, Ohio State Univ., Colum-

22. Keunebs, A.: Device roepesentation: the significance of functional knowledge. IEEE
Expert 6(2):22-25, April 195

23. Keumeho, A.: Mashine Uondrtanding of Devices: Causal Explanation of Diagnoetic

Cioaduloeas. PhD thesis. Th. Ohio Stat University, Columbus, Ob*o 1396

103

24. Keuneke. A.. kdlemang, D.: Exploring the "4No-Function-ln-Structure* Principle.
Journal of Experimental and Theoretical Artificial Intelligence. 1:79-89, 1989

25. Keuneke. A.. Allemang, D.: Understanding Devices: Representing Dynamic States.
Technical Report. The Ohio State University, 1988

26. Neches, Rf., Swartout. W. R., Moore. 1. D.: Enhanced maintenance and explanation
of expert systems through explicit models of their development. IEEE Transactions
on Software Engineering, SE-II(II):1337-1351. November 1985

27. Patil. R.S.: Causal Representation of Patient Illness for Electrolyte and Acid-
Base Diagnosis. PhD thesis, MIT Lab for Computer Science, TR-267. Cambridge.
Massachusetts, 1981

28. Pople. R. E.: The formation of composite hypotheses in diaguosic problem solving.
Proceedings of the 5th International Joint Conference on Artificial Intelligence.
pages 1030-1037, Cambridge, MA, 1977

29. Reggia. J.: Diagnostic expert systems based on a set covering model. Internatwnal
Journal of Man-Machine Studies. 19(5):437-460. November 1983

30. Reiter. R.: A theory of diagnosis from first principles. Artificial Intelligence.
32(l):S7-95, April 1987

31. Sembugamoorthy, V., Chandrasekaran, B.: Functional representation of devices
and compilation of diagnostic problem solving systems. J. L. Kolodser and C. K.
Riesbeck. editors. Experience, Memory. and Reasoning. pages 47-73. Lawrence Er|-
baum Assoc., Hillsdale. New Jersey, 1986

32. Sticklen, J.: MDX2, An Integrated Medical Diagnostic System. PhD thesis, The
Ohio State University, 1987

33. Sticklen, J., Chandrasekaran, B., Josephson. J.: Control issues in clasificatory
diagnosis. Proceedinp of the 9th International Joint Confereace on Artificial In-

A teiligence. pages 300-306, IJCAI, 1985
34. Sun, I., Sticklen. J.: Steps toward tractable envisionment via a functional approach.

Second AAAI Workshop on Model Based Reasoning, pages 50-56. 1990
35. Swartout. W. R.: Xplaim: A system for creating and explaining expert consulting

programs. Artificial Intelligence, 21(3):285-325. September 1983
36. Tanner, M. C.: Explaining Knowledge Systems: Justifying Diagnostic Conclusions.

PhD thesis, Dept. of Computer aad Information Science. Ohio State University.
Columbus, OH, March 1989

37. Weintraub, M.: An Explanation Approach to Assigning Credit. PhD thesis, The
Ohio State Uaiversity, Columbus, Ohio, 1991

38. Weise, S. M., Kali/mwski. C. A., Amsard. S., Safr. A.: A model-based method for
computer-aided medical decision-makiag. Artificial Intelligence, 11:145-172. 1978

39. Wick. M. f.. Thompson. W. B., Slagle. J R.: Knowledge-Based Explanation.
TR 6W-24, Computer Science Dept.. Univ. of Min*. Minneapolis, MN, March 1988

-1

"This artice was pr-umed manamg the WrEX macro package with LLNCS style

-1

104

Functional Representation
as Design Rationale

B. Chandrasekaran, Ohio State University

Ashok K. Goel, Georgia Institute of Technology
Yumi Iwasaki, Stanford University

he design process involves exploring design spaces, simulating and veri-
tying candidate designs, and possibly redesigning and repeating the cycle.

S The body of information that explicitly records the design activity and the
rasons for making choices (and reasons for not making some choices) is called the
design rationale (DR). As more of the design process gains computational support,
some designers are focusing on the tasks of defining the components of DR and
casting it into a form that can be recorded and manipulated computationally.

Research is addressing what kinds of information DR should contain and how
to express it. In a recent special DR issue of the journal Human-Computer
Interaction,' MacLean et al. proposed a semiformal notation called Questions-
Options-Criteria (QOC) to represent the design space. As the space is explored,
Questions identify key design issues, Options provide possible answers to these,
and Criteria help assess the options. Lee and Lai3 proposed a language called DRL,
which provides a vocabulary for recording design alternatives, the evaluation
space and criteria, and the argument structure in which design discussions are
conducted.

Although a design Lee and Lai make a useful distinction between using DR as

(1) a record of the exploratory activity of the design team (along the lines of the
rationale cannot information captured by the QOC formalism) and

be completely (2) an acount of how the designed artifact serves or satisfies expected func-
tionalities.

represen• ed, The distinction is esentiaLly one of describing the designer's activity (what

Functional alternatives were considered and what choices were made and why) versus
describing the artifact's functioning. We consider the use of a representation called

R.epresentation as a Functional Representation (FR) for describing how the device works (or is

good framework for intended to work). Specifically, we wish to show how FR can be used to capture the
causal component of DR. By that we mean the designer's (or the design team's)

describing causal o of the causal interaction sequence between device components that leadscom onetsbecuseit to.ac-ievin device functon.
components because it Some of the tasks for which DR can be used are

embodies a theory of (1) Convolling disibhud daigri acdvity. In concurrent engineering, the DR for

how causal stories amr design decisions made by one group can be used by other groups to avoid
redundancy of effort and incompatible design choices.

understood. (2) Reasesing device fancnomi. During the period of device use, the compo.

Ul5.g1521690211.00 a 159I Im COMPUTER

105

nent values might drift or even change
qualitatively. Users might examine DR an o b ommd1afdek
to swe whether the device can still be----

expected t civ h eie uc
tions. They might also examine it to ce.r im us in e ap .e.
evaluate deviations haom the expected Y FWYOU*M WW(
range of behavior."ec OSON1as

(3) Geteramnng diagnosa knwledge. epu .
DR can support the generation of diag- Sin UbIPSAF .
nostic procedures, thus helping main- tWinissti*pstW gs, eIs

(4) Simulating and verifying design. .ptk
DR can help evaluate whether the do- p4ýjjjejjjjV OW MM~~ggedJ .. *aawm st ty.
vice will perform as intended. In partic- Wd 61w *tsors.am
ular, DR information can assist in to- hold #~ js a *d*aJ.uu OW se "Vmawift e. GW a do-
cusing and controlling device simulation ý .mWiras.
to verify expected functions. We ~iua .d*im ds*sW

(5) Redesigning and case-based de-
signing. When it is desirable to change a .W
device's function, much of the structure g
can be retained if the intended change is - ---
not drastic. DR can help identify the Xi.pagn.*
components, subsystems, or parameters
needing change. thus avoiding a new dm me. e s
design from scratch. Similarly, when a dsieo
new device is being designed, previous Xeimh .pS~ I~uMs
designs can be examined for similer
functionality. The design that requires V
the least modification can be chosen
and modified (case-based design). DR ygp u a *
can also be useful in identiyn the 4101v awm L~~ini h~d~m ~w
design that is "closest" to the desired w m ee rni.Is w ,# u eu seu mped.
device and in noting where this design of~j~ g ~ug
needfs modification.

The FR language includes elements A~~rtsInth m W b dea*
for capturing DR in a form that can be pmaa re* A d w ~ tisuqdo-
helpful in performing some of these ~ ~e burnudsM *w
tasks.gn~b ~ ~ ~ sdwsseo e u

Functional.................. ..

Representation Vwnshss il

As stated previously, FR as a repro mm p~gg m g g
sentational schee tor the Caual" proM
Ceose that culminatae In the achieve.
ment ofdevice fnom. (Noe ailde ices i%,1
are besn viewed a s ubeving their fuse-
tionsbymasnotasmpromgs, which
we discuss later.) FR takes a top-down

sense that the overall funacton is do. '

scribed first and the behavior of each
component is described in the coatent
of this function. This contrasts to fte
bottom-up approach taken in oany be.-
havior-orientedinowledp-represenwt-
tion and raoigschm. (Seeth
sidebar.) Ple

Figure Iis aschematic of adevice

January I9M

106 "

stance "nitric-acdd" has the properties
"temperature," "flow rate," and
"amount of heat" (which itself is a sub-

Comonnt are configured in se
I~III6O.:.*cific structural relations to each other to

IL compose a device. Components thus
P1 GP2 have ports, at which they join other

PEWSP~.........components in certain relations. In an1 N iI K I §W electrical circuit, components are "lc
trically-connected" at defined terminals.

OW 14,0In the NAC example, the relations in-
clude "conduit-connection," "contain-

P~s ment," etc. (The relational vocabulary
can also include unintended relations,

08*0la MM ,*S. P4. W W4 such as "electrical leakage between comn-
*UMOM LAtmtp ponents." The components can be in

WO@9 hAy Pam L unintended relations as a result of mal-
functions.) The vocabular of relations

Figure 1. Schmadic of a uihic adid cooler. is domain-specific. The relation seman-
tics are established by the domain laws
that govern the behavior of the compo-
nents in the given relations.

called a nitric acid cooler' (NAC). In a specific instance of "pipe(l, d)," with
FR, we represent the structure and func- specific values for Iland d. Similarly, the Device struchure A device's struc-
tion of a device and the causal processes device NAC as a class has a function ture is a specification of the set of its
that occur within it. We use as primitive "cool-input-liquid(rate, temperature- components and their relationships. The
notions the ideas of a system, its input, drop)," where "rate and temperature- components are represented by their
and its output behavior. A device is a drop" are capacity parameters of the names and by the names of their func-
system with some iuntwded input-out- function "cool-input-liquid." A partic- tions, which are all domain-specific
put relations, called functions. A comn- ular NAC can be identified by specific strings. Variables can serve as compo-
ponent of a device is itself a system values for these parameters. Devices nent parameters. All components have
characteried by its functions. cank have substances whose properties ports toconnect with other components.

Classes of functions and components are transformed as part of their func- Forexample,thecomponent type "pipe"
can often be described by use of param- tions. Substances can be destroyed and might be written as "pipe(l, d; t1, t:2),"

eters. In the NAC example, component new ones created. They can be physical where ILand d are the length and diam-
class "pipe(I. d)" describes pipes with (as in "nitric-acid") or abstract (as in eter, and h1 and t, are the input and
length Iland diameter d, while "pipe2" is "heat"). In the NAC example, the sub- output ports. The FR language uses

Figure 2. Keyword.
mnd syntax Wo 4ico KNtt> w>)

device ustucture O Q M b . C~ Mp asiP ita
In Fimdnesen m!upua~UAIN(a~ds'uae'.

Reproseiat"e&

AMi1(1, A* pl. p2). ppe2(1, Aip d(Ag Outpuut)

MdOMWO121CInput-Pa

107

1
keywords for describing structure, a
shown in Figure 2. The capitalized key- .

words ar FR (and hence DR) terms. I
Figure 3 describes the structure of

NAC The terms in iale am domain- etim p

specific names for functions, compo -

nents,relations,etc.TheFR interpreter .
treats them as strings. Additional do-

main-specific interpreter. may be writ- V Of2~
ten that can use the italicized terms as

meaningfil keywords. For example, a 31gm 4. Ca process dsplons fera device nitrc add cooler (without I
mechanicalsimulatorcan use such terms --. aord

e idsw u

as "contained-in" and "conduit-onnect-
ed" to perform simulations. For the pur.
pose of this exposition, they are to be (substance: nitric acid; location Let nodes "statel," "state2," and
understood in their informal, English- (substance): p3,temperature "state3" correspond to the states of ni-

language meanings. The syntax of the (substance): 72), tric acid at the input to "pipel," at loca-

Relations keyword is that an ncary rei- tions p2 and p 3 , respectively. Figure 4 I
tion has. co Mponents. The Ports term where T2 < TI. The language in which depicts the CPD graph (without any

indicaesconnected ports.Note that the states are represented is not part of FR annotations or qualifiers), describing
components ar described purely in and is largely domain specific. In eco- what happens to the nitric acid and wa-

terms of their functions. Components nomics, the state variables would be tar as they flow through the chamber. I
can thus, in principle, be replaced with entities such as "GNP" and "inflation- We have represented the nodes in in-
structurally different but functionally rate"; in nuclear plants, the entities formalEnglish, buttheycanbedescribed
identicalcomponents. Further, the com- would be "radiation-level," and so on. more formally, similar to our previous
ponents themselves can be represented Goels defined a state-description lan- description of "statel."
as devices on their own terms. guage useful for devices dealing with We have identified three types of

material substances that change loca- annotation for explaining a causal tran-
States sad pardul stabe. A device tions, such as those in which substance sition: appealing to another causal pro- I

state is represented as a set of state flow is a useful notion. The state repre- cess, to a function of a component, and

variablesconsistingofvaluesofallvari- sentation that we just used for NAC to domain laws (so-called first princi-
ables of interest in the device descrip- employs this language, ples). Let's elaborate on the three dif-
tion. State variables can be continuous ferent types of knowledge used for ex- I
or discrete. In particular, some of the Camel preeme desciptlon.The intu- plaining a causal transition.
variablescantakethetruthvalues(T.fl, itive idea here is that we understand
that is, they are defined by predicates. how devices work by building a causal (1) By-CPD. In explaining the transi-
An example of a continuous variable is description of how they go through var- tion "water heated --+ steam created," I
"water temperature" in a device that ious states until the desired ones are we can point to the causal process of
uses water for cooling a substance. An reached. We explain the causal transi- "boiling," which is part of the common-
example of a variable defined by a pred- tions between states by appealing to sense knowledge of most humans. The I
icate is "open?(valve)" (not shown in component functions and domain laws agents for whom the explanation is in-
the figures). This variable takes Tor F (such asscientificlaws).Thecausalpro- tended will acept the explanation if
as a value, depending on whether the cess description (CPD) is a directed they already understand the process or
valve is open or shut. paphwithtwodistinguishednodes,N. if the details of the process do not mat- I

In describing functions and causal and Ni.. Each node in the graph repre- ter to their purposes. If the details do

processes, we gaerally talk in terms of seats a partial description of a device matter, they can ask for a more detailed
partial states ofthedAimu.Thebsestanes state. N., corresponds to the partial explanation of the causal transitions
ar given by the ve.m of a subet of state when the conditions for the func- involved in "boiling." In any case, this I
state variables. F thWler the partial tion are initiated (such as when a switch enables the proem explanation to be
state(cafloi'swM1l)u NAC(describ- is turned en). N, corresponds to the hierarchically composed from other a
ing some relevantatw variabls at the sutte when the function isachieved. Each process explanations. shonening ex- I
input pt of the device) can be given as link represents a causal connection be- planations at each level Once "boil-

tween nodes. One or more qualifiers ing" is understood, it can be reused,
(substance: nitric acid; location ane attached to the links to indicate the possibly after instantiating some pa-

(substance): pl.tampersture conditions under which the transition rameters (such as the pressure at
(substance): Ti1. will take place. One or more annota- which boiling is performed and the liq-

tions can be attached to indicate the aid that is being boiled), whenever it is
"State2,0 describing the properties of type of causal explanation to be given needed to explain other processes. Hu-
nitric add at location p2, dieflrs only in for the transition. The graph can be man domain expertise contains know-
the location parameter, while the par- cyclic but must have a directed path ledge of a large number of such causal
tial state description, "stat•e., at loca- from Nw to N., processes that can be parameterized
tion p3 is Consider the NAC example apain. and reused.

Jswy 1993 0

tion starts. The conditions can refer toS...................the states of any component or sab-

sw saw stance. Manyofthee qualifers are even------ ,-.-.--:ý.... .. . -,::tually translated as conditions on the
ne"", structural pearmeters.
M, FigureSsthmm • ily annotand causa

......... Ml:•":,"•• transition from "state2" to "staze3" in

..the Nitric Acid Cooler. It uses two func-
tional annotations and one domain-law
annotation, and employs conditions on
the substances and structure as quaLifi-ams The qualifier include conditions

. on the properties of the substance (it

..... should be a "liquid of low acidity") and

SFls11m. 5. Anmetadlem und qusihb. faa • , b, d en la .1 i m nid €oders qualifier.
stte uuute (a) sad Fnonen b.inusedm. Every device has intended

functions. Keuneke' has identified four

typeg ToMake, ToMaintain, ToPrevent,
(2) Ry.F ...Of-cconpona>.In tion, weareactuapointingtoaCPD and ToControL Formal definitions of

.electrical circuit, the state transition that partly explains that function. TheMe thee function types have been devel-
"Switch(on) -- Voltae a e a e two differences between these an- ped but for our purpos, the follow

¶ n~•als" might beexplained by pointing to notatios-Theafirst one is how the CPD lag informal ones should suffice. Allthe
thefunctionofthebatteryasasourceof are indexed. In the case of a By-CPD function types above except ToControl
voltage, thatis, bytheannotatio, "By- annotatio, weare pointingtoapMeceof take as argument a predicate, say Pi ,

SFunction(voltage generation) Of prior knowledge explicitly labeled as a defined over the state variables of the

Component(battery)." In fact, a major causalpress, whilein thecase ofaBy- device.Thefuntionis theToMakeftype

goal of causal explanation is to detail Function annotation, we are pointing to if the soal is to make the device reach a
"device behavior in terms of component prior knowledse of a component fun- state inbwhich P,is true. After that state
p roperties and interonnections. Again, tion. The second difference is that a is reached, no specific effort is needed

hlare part of human domain expertise component function may not have a to keep the predicate's value to True

is in the formnge of knowledge about CPD explicitly available to explain it. (or it doesn't matter what state the de-

g eneric omponentsiand theirtfunctions, Oftn we know many omponents only vice goes to after the devie state is

deven if the details of component func- by their functio mons atched).

tion are unkaown. The ability to ex. Sometimes additional noncausal A function is type ToMaintain if the

plain device functions prtlyintermsof links must beadded toarriveatthepre- intention is to take the device to the

Somponent functions and towexpabin the dicate of interest. For example, for an desired state and i t the device must

Slatteneri ms of subcomponents helps amplifier, we may have constructed the cansaly ensure that the predicate re-

form functional/component hierarchies CPD, mains True in the presence of any exter-
in explanation and design. Volteat the input Volt nal or internal disturbance that could

(3) By-Domenb-Law -c...>. Another aoe 1elattheouput, change the device state. The function
form of explanation occurs through ap- a 10 at the output, type as Tofrevent if the goal is to keep
peal to domain laws. In the engineering but the function that needs to be ex- Pfrombeingtrueandsome active causal
domain, scianti•fck lasivide the ulti- plained might be "amplification of 10.* process in the device must ensure it.
mate explianation dovice behasvior. Anoocausaldeflnit onalabsracionlink (Logically, ToPrevent P can be written
For example, the mom traisition, "S can be used to arrive at the node "am- am ToMaintain (Not P), but there are
volts at the input -#2 meies through plification of l0 twom "Voltage 10 at important diffemrnces in practice. Prag-
the load might be explained wm 0By- the output.* Such links can be used to matically, a designer chaiged with en-
Domais-LAw(Obm'slaw.voftap= cur- indicate an inference that follows from suringtthatadevi, forexampledoesn't
rent * resistance)." predicates in the earlier nodes. expiode uses knowledp indexed and

In addition to annotations, the links orpanind for this purpose. Preventing
For a particular device, any realistic may have qualifiers that state condi- thisexplosionbyzen•ngsay, athickpipe

FR description tapers off at some level tions under which the transition take is not the samo as maintaining same
of componenta and CPDs. This is an plaes. In FR. the qualifier Provided(P) dynamic state variable in a rage.)
example of the general incompleteness indiat that condition P must hold The function type ToCentrol takes
inherent in FR and DR. during thecauasi tramition for the tran- m arpument a specified relation v. -

The functionofadevice(oracompo- sition to be initiated and completed, J(Y, vJ)betw state variables v•,
neat) is explained by pomntingtoa CPD. andlf(P)indicatesthatconditionPmust vt,.... v,, and the intent is to maintainSWhen we u a By-Functiona nnats- hold at the moment the causal trasi- thisrdationship. That is, we wish to

COM10TER
I 109

control the value of a specific variable WE R~ ~.
as a function of the values of some other
variables.

Function F thus has the descriptive ~ a l W
elements shown in Figure 6. Now recwn-. I:gT #f* MIul
sider the example in Figure 1. Hot nitric
acid goes into a beat exichanger, ex- ~.
changing heat with the water that is................
being pumped in. The water becomes Rp" 7. ftsctlei seipfclle~s; o~nf mibe d Peder
hotter while the acid becomes cooler.
Figure?7 provides the functional defini-
tion of MAC. The complete FR is given tional representation as an idea is quite the other hand, there is no real con-
by specifying the device name. its struc- general, the set of primitives discusse straint that the devices must be physical
ture. state variables of interest, func- so far only covers a subclass of devices. for useful FRs to be constructed for
tions of interest, and the functional temn- Not all devices have functions that have them. The FR framework has been used
plate, including the CPDs. The FR to be understood in terms of a tempo- to represent computer programs and to
language has many implementations, rally evolvingcansal process. For exam- reason about programi errors.' FR has
each with a somewhat different syntax, ple, the device "chair" has the function also served as a vehicle for reasoning
We have used a composite syntax, cho- "to support the seating of a human." about complex physical systems; refer-
sen mainly for expository effectiveness. However, this function is not accom- ences 4.6,7, and 10 provide some exam-
We have suppressed many details by plished by any causal process that in- pies.
giving English-language descriptions of volves state changes. Instead, the func-
the intended information within paren- tion is achieved by the chair' shape.
these or curly brackets. For example, Bounnet has identified afunction type FR as design rationale
we sa Qualifiers: (appropriate enclo- called ToAllow to accunt for these
sures of pipes in chamber)* in Figure 5. instances. While FR does not encode available
Goelsprovides a detailed syntax for rep- Second, FR discretizes continuous alternatives to a choice and why they
resenting the relevant relations about causalprocesues intonode-to-nodetran- were not chosen, it does provide a par-
pipes. sitions in which some predicate of inter- tial rationale for choices made about

est changes at each node. There are components andtheirconflguration. We
Using FR to represeat a devkse A many phenomena for which explana- say partial because the CPD encodes

language by itself does not fully specify tions are given by simply displaying the only the directly causal role of acompo-
bow it should be used, therefore, a few behavior of a continuous function. For nent. Of course, there could be other
remarks on how FR shouldc be used are example, gar teeth meshing smoothly reasons for choosing a partic~ular comn-
in order. First, thmeIsno unique FR for can best be explained by showing the ponent value.Also, the roleofatacompo-
a device. There mabe dllft suin the displacemnict functions of the teeth. neat in achieving a function can be dis-
ways various ags ds be ow a do- Third. more research In needed to tributed over several transitions and
vice works. The dNum wighit we repmeosni fuctions having temporal re- differenit CPDL The rationale for why a
late to how the esplado was decum- lations between states that serv as an comaponent was chosen might actually
posed, what back~oud keowldg.was esetial part of the function definition, reflect these multiple constraints. In an
assumed, and the intmndsd use of the For example, an electronic sewtooth electrical circuit, the real explanation
causal explanation.Second, chaiseshay signa generator goes through a certain for why a resistance was chosen to be
to be amade about what functions should series of state changes when charging, 1,000 ohms might be that the resistance
be explicitly represented. Whil every and dischar~gigits output capacitor. The had to he less than 2,000 ohms for a
device ham intended functions, there are ftactioatobeadb.evedcorresponde not specific: transition, greater than 600 for
a number of implicit functions (sach as to the devise being in a single desired another transitioni, and standardized at
a design specification of a TV MRt that statebut wits repeatedlyrcyding through 1,00 ohms for emy procuremnent. Be-
does not explicitly recor that it is not a sequemc of satss, with each state camec the latte inormation is not part
intended to explode). haWin a certain duration, of thwe aml amount, It is amt directly

Representingl these aspects of a cans- represented in FR.
RswefM9p,Is 1013 While foac- al prooms in an open research issue. On We eerler identified a number of 1

Ian"ar 199

110j

tasks taDRshould be able 1osupport on a eiywhether the design will
diagnostic koldea aio smacivitfucininteintended

sigwcanmmdse design. PR can support Ntild pO iccultiss, however, in using FR and simu-
man ofthn tsk tothedom tat knowledge can be lation results for design verification.

they require causal knowledge about deried frnm First, there is a possible gap in levels
device operation. Of course, all these design -nftrato otabstraction ewen tbelanp555used
tasks can also benefit trom information intefucin pcfcain.nF n
that comes from other DR components. aln.the language in which the simulated7 in particular, the. redesign task often behavior is represeted. For example,
requires a knowledge of why certain the behavioraf transistors and resistors
choices were not made. Additional may be simulated in team of currents
knowledge from other DR components and voltages, but the function of the
could be useful for those aspects of the in& issue in its own right but is not the circuit as a whole might be described as
tsk. in this section, we give brief over- subject under discussion. an oscillator or as an adder. To make
views of how to use FR for diagnostics The technique of identifying a com- verification possible. one must ensure
generation, design verification, and re- ponentmnalfunctioneitherdirectlyfrom that each abstract concept used in the
design. the annotation By-Function or by re- functional specification is clearly de-

cursive application of By-CPD leads to fined in terim of the concepts emnployed
Genmenilee efdiqusalede n.wiedge. a diagnostic tree with leaf nodes that in simulating the behavior.

For simplicity, let's first consider a CPD are malfunctions of components orsub- Second, the model used for simula-
in which each transition has only one components.Thediagnoticruleforeach tion may contain details irrelevant to
annotation. Consider a transition in a malfunction consisatso rules of the form verifying the function oc interest, or it
CPD of the form "If the predicatescorresponding to node may not contain all the relevant infor-

n~are true but those corresponding ton, mation. For example, a pipe us a comn-
By-Function F-Of-Co~mponent c are not true, thn " ponent can be modeled as a conduit for

MI n2 What happens when we have more fluid flow, as an object with thermal
than one annotation, as in Figure 5, properties, or as both. If the function to

Suppose the device is in the partial where the transition is explained by beverifiedooncerns only flow, wewould
state ph, that is, the device is in a state appealing to more than one function? on this information to construct, an ap-
that satisfies the predicates correspond- In this example, the transition can fail propriate simulation model that is as
in>on, Suppose we test the device and when "pipe2* is blocked, or has a fail- simple as possible while containing all
observe that it faids to reach ni. What uire in its thermal (heat-exchange) func- relevant aspects.
conclusions can we draw? The CFD as- tion, or when the conditions in the qual- The CPD can be used as follows in the
serts that the device goes from partial iflers are not satisfied. In this case the design-verification task.7 The predicates
state ohto % because of the function Faf rasto'fiuennyidentify these that appear in the CPD definitions ofIcomponent c, and therefore, we can hy- as possible malfunctions. It cannot as- the nodes and the functional predicate
pothesie that the failure to reach % as tablish them because additional infor- P, are term of interest at the device
due to component c not delivering func- mation is necessary. leveL These predicates are first defined
tion F. Corresponding to this transition, Note, however, that not all diagnostic in term of objects and predicates that

*we can identify a possible malfunction knowledge can be derived from design appear in component definitions. For
state "Component cnot delivering tunc- information alone. For example, rank- examle suppose the predicate "Am-
tion F.- The diagnostic rule, -devize orderingdiagnstbypotheses in tern. plifiation-LAvl'appeaminthedescrip-
satisfies Ph but not n,* can be used to of likelihood and pursuing them in the tion of a CPD node and that the compo-
establish this malfunction mode. ordsrofmostto-loentprobeble a quite neat behaviors are in terms of voltages

If the annotation hod instead been common in diagnostic reaoning. But and currents. We first defin the predit-
"By-CP CPD-140 whose C3D-1 is a thisordernlgrequirooknowledgeof fail- cats n termafvaltaessat the input and
specific CPD, we *.M sholory exam- ure probabilities for oomponents. This ontaptafrelevantoomponents. Second,
in. CPD-l to -e fty this transition inlamatiouaotderivable bmnacaus- we perform the simulation. Finally, we
failed (a transition im CGDi mUst have al model CC how a devIne works. Addi- atnmps to esudtabk that staews in the
failed if the transition bas ss to tiWonal Inforiation, in the farm of failure; Wlaksed behavior correspond to each
failed). Ultimately, we sen identify the rates insneeded. Coinversely, not all di. CD node and that each GPD transi-

copoet function responsible fo the agnosticknowledge derive from nuas- dion in &M occurs in the simuatied be-
faiureoftM o va.al models Is drectly usable, since some havior in the itenoded way.

There. nso malfunction correspon d- variables mentioned in the diagnostic Consider a transition from ný to % in
WSg to a transition with the annotation rulesgeusasedkomoasalodelemay the CPD of en electrical circuit. Let's
By-Domin-Lawr a domain law cannot not be dirsecty observabl. Additional say it.i eannotted as Ry-Fncton F-Of-
fail to hold Of counre the dopesinrs hinisrce may be required. Component c. Suppose #% is character-
account agthe robe played by &M do. Ied by the ptedieste -wWlication at
main law coold be' incorrec1, but we ar Doolgved~loodmBycmnporlagthe partp Ih- 15' and %, by Oumllkastion at
assuming here that the FR Itself isoor- behavior VPredic ied by dsomlation and port h 30,' where 'amplification at
remt.How to verify tha~esF seintersevt the FR al the desire deis function,

COMPUTER

port x" is defined in the language used by modifying an element in the transi-
in the simulation model as tion. For esaple, in the transition

"state2 -# stater," Kritik finds that fl
vol at X / Voltage at pg. There is no real "p rhan-"allow* function restrct-

sense in which ed to lowacidity substans.
To verity this portion of the CPD a desgn rationale Kritik has a typology for modifying

fromn, ton, we search for a state in the cm be compleely device components:
simulated behavior where the predict-
ed values of the voltages at p, and p, repr lltImi. e the parameters of a component can
stisfy the condition for n,, using this be tweaked,
definition of amplification. U such a e the modality of a component's op-
state is found, we must also find the eration can be changed, and
same (or later) state in which thecondi- aone component can be replaced by
tion forna is satisfied. If such a state is solve three subtasks: identifying com- another.
found as well, we at least know that the ponents that require modification. iden- !
situations described by n, and 2 actual- tifying needed modifications, and veri- This typology correspondingly pun-
ly take place in the simulated behavior. tying that these modifications produce erates the modification hypotheses that

However, before we can claim verifi- the desired function changes. "piper
cation of the CPD transition, we must Deciding on the appropriate modifi-
show that the realization of condition na cations requires additional knowledge, * allows the flow of high-acidity sub-
was caused by conditionn, and function some of which might be found in other stances in a different parameter set-
F of component c. If component c had parts of DR. For example, it DR in- tins.
no role in the transition, it may not have cludes the reasons certain design op. - allows the flow of hih-acidity sub-
been needed. tions were considered but not chosen, stances in a different mode of oper-

The meaning of one event causing this information might be relevant to ation, and
another is a contentious philosophical the redesignproblem. Regardingverifi- *has to be replaced with some new-
issue. However, within the context of cation,Pegah,Boad,andSticklen'stuse "pipe2" to allow the flow of high-
any one modeling and simulation of FR for parametric simulation is rele- acidity substances.
scheme, one can define causal relations vant. They show how FR can be viewed
unambiguously. Iwasaki and Chan- as a form of compiled simulation and Because how the modification is cho-
drasekaran7 provide such a definition of suggests ways in which FR can incorpo- sen does not directly relate to DR, we
causal relations in the context of a par- rate information about device behavior omit that discussion. Goel' details how
ticular model-formulation and simula- over ranges of component parameters. Kritik handles the replacement of nitric
tion system called DME (Device Mod- With this information, one can straight- acid with sulfuric acid.
eling Environment), based on the forwardly derive device behavior when
N,:tom-up. behavior-oriented approach component parameters are changed.
(see sidebar sain). In the verification We outline how Knitik,' a system that esign rationale is a record of
scheme described in that reference, this performs a form of case-based design, design activity: options that
definition is used to show that the con- uses FR to identify candidates for mod- were considered, choices that
ditions specified by a CPD node and by ification. Suppose we want to modify worn (and were not) made along with
the annotations on the transition link NAC to cool high-acidity sulfuric acid reasons for the decisions, and how de-
out of the node play a causal role in rather than low-acidity nitric acid. First, signers satisfied themselves that the
achieving the condition specified by its Kritik compares the functions desired device would work as intended We have
successor node. of and delivered by the candidate NAC proposed the use of a framework called

design and notes that they differ in Functional Representation as a candi-
Rededp. In this tast the goal is to date forcepturing the iner component

t-dify the ertfastMwlkamet, ame- (1) the substance to be cooled (sulfu- of design rationale. FR encodes the de-
what diflerent fuilnes. As previously ric instead of nitric acid) and signers amount of the causal procese I
noted, it the required champ in funo- (2) a property of the substance (high in the device that culminate in achiev-
tion are drastic• radmlrutural &aer- instead of low acidity). ing its function. The representation
ations may be asedse possibly requir- makes explict the components roles in
in& another desip from scratch. Since the substance property differ- the causal process. FR has been imple-
However, ifchas aruuensmall. redesign earn occurs in the function cod (low- mested in severld versions &an ed to
can be accmpished by relatively sim- acidity) nitricacid."Knik uses hi func- represeet and reoaso about a aumberof
pie modifications to the e•ting struc ties to access the CPD responsible for systems.but usingittorepreeetacom-
ture, perhaps by parametric cha"n to i. A fragmes of this CPD, the trami- pomt of dedn ratiotale is noveL

the compoaets ad substams. Weezn tex. from "stater" to "state3," is shown We have discussed the lUmitatiaos of
aiminiethe roleofDRinpiasislasdFR in Figure S. Kuitik troacs through this FR as design rationale in that It cap-
in particulr in the redesign probem, CPD, checking each state transition to em ony the caud scal inpioest. We
assuming that the required cans amre dermin whether the gol of reducing hame aso diimed the liiattios of
parametric. fhestaampropertydflerem(Olow- the cumai rea pertaire of 9 P ota- .

To a ccompMsh d task, we need to adity-#-,lghacidity*)csabeachived slnmuprhisivesinFRfarcmpsudungthe

Janury 119 112

I
"causal component: They are restricted 1. A.K. Goel, "A Model-Based Approach essincludedesignproblemsolving and com-
to devices that achieve their functions to Case Adaptation," Peoc. 13th Ann. puter-aideddesign, mental models and mod-

Con!. Cogniuv Science Soc., Lawrence el-based reasoning. and case-based reason-by means of causal state chee5s; com- Eribaum, HillCdae, NJ., 1991, pp. 143- ing sad leaing
plex temporal relations are not easy to 148. Goal received the MS degee in physics
capture. But the basic framework is and the PhD degree in computer and infor-
extensible. The central idea that makes 6. A. Keunek, "Device Repre 11n:io, maon so/ence.from Ohio State Uaiversty.

aeThe Significance of Functional Knowl- He has served on several conference pro-FR a good candidate for reprenting edge," IEEE Ezpen, Vol. 6, No. 2, Apr. pam committees, including AAAI-92. Hethe causal component of design ratio- 1991. pp. 22-25. chairs the IEEE Systems, Man, and Cyber-
nale is that it embodies a theory of how 7. Y.IwasakiandeB. ,a D- aetiaTecical Committee on Al and is acausastoris are1992-93 UNy Teaching Fellow at the Geao-
causal stories are understood. This ide sip Verification through Function- and 8ia Inmsu of Techinology. He as a member
will continue to form the organizing Behavior-Oriented Representations: of the 1EEE o logy.
principle for any extensions of FR as Bridging the Gap between Function EE Computer Society.

weol. Behavior," in AA*Ud lnmegence in
Design rationale is not only many- Pebisner, s toned. KhMp.rAcaemic Ya, -wasu•edlis a research scientist at Stan-

faceted but also intrinsically open-end- Publishers, Boston, 1992, pp.597416. ford University's Knowledge Systems Labo-
ed. There is no real sense in which a & J.C. Bonnet, 'Towards Formal Repre- ratory. Her research interests include
design rationale can be completely rep- sentationof DevioeFunctioality,"Tech. model-based reasoning and resoning with

r Ultimately, much of i wl Report 92-54, Knowledge Systems Lab- pictorial repesantations.
resented. oratory,Stanford Univ.,Stanford, Calif., Iwasaki received the BA degree in mathe-
appeal to shared commonsense knowl- 1992. matics from Oberlin College, the MS in Al
edge about how objects and people be- Aeom StaUoord University, and the PhD de-• have. What aspects of the rationale to 9. D. Allemans"Usin8 Functional Mode e 8ran in computer science from Carnegieh t o iin Automatic Dbuggin&,"IEEE Ezpen, MellomUniverity.SheisamemberofAAAI,
make explicit will depend on intended Vol. 6, No. 6, Dec. 1991, pp. 13-11. the Japanese Society for Al, Computer Pro-
users and tasks. U fessionals for Social Responsibility, and Sig-

10. K Pegah, W.E. Bond, and J. Sticklen, ma Xi.
"Representing and Reasoning about theAcknowledgm ents Fuel System of the McDonnell Douglas
F/A-18 from a Functional Perspective," Readers can contact Chandruekaran at
submitted to IEEE Expen. the Laboratory for Al Researc., 2036 Neil

Chandrasekaran's research was support- Ave., Ohio State University, Columbus, OH
ed by DARPA AFOSR Contract F-49620- 43210; chandra0ci.ohio-state.edu.
89-C-0110 and AFOSR grunt 89-250. Goel's
"work on design is supported by gants from
the National Science Foundation, the Office
of Naval Research Contract N00014-92-J-
1234, Northern Telecom, and equipment
grants and donations from IBM, NCR, and
Symbolis. Iwasaki acknowledges support
from DARPA and from NASA Ames Re-

"7 search Center (NAG2-581 and NCC2-537).
We are grateful to John Josephson and the
anonymous referecs for many useful sug-
gestions, and to the guest editors for theirsupport and no urallemet IL Qwh roedterme directs the Laboratory

for Al Research and is a professor of com-
puter and information science at Ohio State
University. His research interests include

References knowledge.bsed systems. using -mages inRefere ces poblem sulvins, and the foundations of cog-
nitive science and AL

1. Special losue on Design Rationale, Cadraekarareceived the PhDdgree
Huan.-Compuar Inwaca, VoL 6, from the University of Pennsylvania in 1967.
Nos. 3 and 4, 1991. He is editor-in-chief of IEEE Experr, a fel-

low of the IEEE and the American Amda-
2. A. MwLan at al., OQuesIo, Optio0, tioa for Artficial Intelligence, and a mem-

Anal * ef0ma m of Smade bar of the IEEE Computer Society.
uson, Vol 6. Nos. 3 md 4,1991, pp. 201-
250.

3. J. Lee and K-Y. Lai,'What's in a Design
Reatonale?" Ham.-Compaw ainmec.
don, Vol. 6, Nos. 3 and 4, 1", pp. 2M0-

4. V. Sembag a ndoB.maD.ndruek-
aran, "Functional Representation of
Devices and Compilation of Diagnostic
Problem-Solvlng System," in F-eM-
ence, Me mory. Nd Rtaaom.g, J.L
Kolodw and CK. Riabeck, ads.. Law- AA"et IL GCod is an assistant professor with
re reEulbaum, HinshdaleJ, J196. pp. the Colege of Computing at the GeorgiaS47-73. lInttute of Tecimology. His research iatr.

113

Explanations in
Knowledge Systems
The Role of Explklt IeNres tlon of Design Knowledge
L Chamdusekuw , Ohio Stlut U0vwully
WI.M. Swrtut, Umivwslly of Souh. . Caifw.i

?THE FOLLOWING TWO ARTICLES
examine explanation in expert systems. EXL4NATIONS OF A NOWLEDGE SYST•,MS CONCLUSION'S
The unifying idea in these projects is of C BE AS IMPOR,'NT AS E CONCLUSIONS TI'M-LYES .Sgeneral importance to explanation: The THE UNIFYING ID AS TR E NEXT SIO R S IS OF

more explicitly we represent the knowl- TiE m G IDEA nv Tm,\u T ,4o T[cL Ls OF
edge underlying a system's design. the E R MPORL4NCE TO EXPLANATION" T HE
better its explanations.

K now ledge and m ethods of using know [- E VL /C MT Y ff E , F.P RSB / 7 ME K NO W L U NDG E RJ.L MG -

edge are the fundamental elementsofknowl- A S= IS DESIGN, THE BETTE ITS EVLANATIONS.
edge systems. Much knowledge-system re-
search has been concerned with developing
increasinglyexplicit representations of theseelements to support increasingly sophisti-

cated techniques for knowledge acquisition. Another important idea for knowledge foundation forproducinggoodexplanations.
system building. and explanation. From an systems is that we can obtain problem- Each type of explicit knowledge makes
explanation standpoint, explicit represen- solving knowledge from other, more gen- specific kinds of explanation possible.
tations of knowledge and method enable a eral knowledge. In justifying its conclu- Also. each such representation makes
knowledgesystemtoexamineitsownstrnc- sions. a knowledge system might need to explicitanaspectofthedesignoftheknowl-
ture and produce explanations from the justify the knowledge used to reach them. edge system itself. Forexample. represent-

S same structures used for reasoning. This in turn requires access to the more ing generic problem-solving methods or
The idea that explicit representations general knowledge that produced the sys- strategies is a way to make explicit the

facilitate explanation was recognized early tem's knowledge. (Although such general strategies that are often implicit in expert-
on (for example. in Mycin'). It soon be. knowledge is sometimes called "deep" system knowledge bases. Similarly. repre-

j came evident that higher level strategies knowledge. or tfint principles.- it is not seating the more general knowledge used
played a role in a knowledge system's better knowledge: it is simply more gener- to derive specific pieces of knowledge in
ability to solve problems. Researchers al. that is. useful for more purposes rather the knowledge base involves making an-
began to explicitly represent problem, than for a specific problem type.) Knowl- otheraspect of the design explicit. namely.
solving strategies (methods or plans) for edge systems based on explicit repre- where the knowledge in the knowledge
using knowledge to solve problems. sentations of knowledge and method. base came from. Thus. the operational prin-
Examples here include Digitalis Advisor., with information about how and from what ciple at work here calls for increasingly
MDX.3 and Neomycin.4 their knowledge was obtained. are the explicit design knowledge.

Ui 9l91 0uIWO MiO04o.%7 1.00C 19"1 MU

114

,, . , ,.

-4

Tusks wild knowledge * Knowledgein.1(S)andR(Siaboutstrat- The second article comes from the

egies and about K lets us explain the behav- Explainable Expert Systems project."' in

Let's say system S performs a task T ior of S and justify its conclusions, which William Swartout and his associate'

using knowledge K. (We would normally - By operating on the representation of have focused on

use Sr and Kr to indicate that S is a system strategies in A(S). we can generate a range * distinguishing and providing explicit

that solves T. and that K is the knowledge of behaviors of S. representations for several kinds of knowl-

related to T. but we dispense with the - The explicit representation in A(S) of edge in WS). including a domain model

additional notational complexity here.) For knowledge and strategies used by S makes and general strategies.
example. Mycin is a problem-solving sys- system maintenance easier. * using an automatic program ,riter to

tem tS) that performs the task of consulting create an explicit design record RISi that
aboutinfectiousdiseasest)usingtherules Of course A(S) is open-ended. so we records how knowledge in A(S) was ap-

in its knowledge base (K). A task is a cannot explicitly and formally represent plied to create S: and
collection of problem instances of acertain • capturing the "'design" of explanations.

type. Forexample. Mycin can solve a num- that is. what the system was trying to sa%
ber of instances of consultation problems- and how it was trying to say it.

in infectious diseases.
A(S) is the knowledge needed to design E..'tPUCT R.EPRSENTA•'IONS In the terms used above, the EES project

S. and R(S) is the design record (the record is concerned with two main tasks: the task

of how A(S) was used to design S). A(S) OF KNOWLEDGE AND T solved by the knowledge system S. and

typically includes substantial knowledge IETHOD ENABLE A the task of constructing explanations E(T)

about the domain's subject matter. the na- of S's performance. Let.N(E T7 i denote the

ture of the task. the range of appropriate 10NOWLDGE SYSNTE.I TO design knowledge that supports the con-

Strategies. the architecture of S. how the Fx-LwrE a Os w STRU'cTURE struction of the explanation Ei n. and let

parts of S accomplish T. and the origin and R(E(7)) be the record of how that design

range of applicability of K. R(S) would AND PRODUCE F_XPL4NATIONS knowledge was used to construct a partic-

consist of the vanous design documents FWOM THE SAME STRUCUR.FS' ular explanation. R(E(7)) captures what

recording the design process. In the Mycin the explanation component tried to conve%.

c.'ample.A*Nlycin)isthedesigner's knowl- USED FOR R-.SONVG. in a particular explanation. what explana-

edgc about the domain, the task. and Al tion strategies it used to convey it. and

architectures i most of which is never made all of it. However. as research in knowl- what alternative strategies exist to get the

explicit). while RiMycini explicitly cap- edge types. strategies. and architectures same points across. This is exactl%. the

tures a small part of its design using an progresses. we will have an increasingly information needed by the dialogue com- I
informal notation 4 such as English or dia- rich vocabulary to represent more and more ponent to understand follow-on questions

grams). Abstractly. knowledge-systerp de- parts of A(S). in context and to correct misunderstand-

sign is a process that produces S from AIS), ings. In theirarticle. Swartout. Cecile Pans.

and RIS) as a partial record of this process. and Johanna Moore discuss knowledge I
BN, the nature of design knowledge. A(S) The GuoUIl7llyin *rtltes justifications and issues related to present-

can support the design of a range of sys- ing explanations and dialogue with users.

tems of which S is a specific instance. For The following articles present results

example. W(S) might contain a parametric from two groups. both concerned with us-

famuly ofstrategies.oneofwhichisinstan- ing knowledge about a system's design to d WW g ,
tiated in S. In the Mycin example. the same explain it. In the first article. Michael C. Ti worke hasi beenle suporedbyaheAi
underlying knowledge ofthe domain, task. Tanner and Anne M. Keuneke report on This work has been supported by the Air• ~Force Office of Scientific Research gr-ant S9-

and strategies could be used to design vari- work at Ohio State University. which has 0250). by the Defense Advanced Research

ants of Mycin that perform different vet- concentrated on Projects Agency (grant MDA 903-81-C-0335

seons of the task or the same task in differ- identifying appropriate strategy abstrac- and contrcts F30602-)5-C-00A0 and F4o620-
ent waVs. tin te89-C-0lI 10). and by a NASA Amnes cooperative

n wys.rsm tions (the generic-task work); agreementrnumblerNCC2-5201. Wethank Saul
pMuch expert-system research has erm- o exploring the relation between task Amarel. Cdcile Pans. and Michael Tanner for
phasened the dvaIntages of explicitly asa requirements and strategies available in S; their comentms on earlier drafts.
resenting K. In fact, expert systems as a and l
field is identified by its explicit representa- * understanding the relationship between
tion of K and its application of various diagnostic-task knowledge and structure-

forms of inference to K to solve problems. function models of the device being 1. E.H. Shonliffe. Coonuter.Based.tfedcal

While we need not explicitly represent diagnosed. Coesultainnr: .1crn. Amercan Elsevier !
a(tS to solve T. there are several advantag- New York. 1976.

es in explicitly representing relevant com- The work reported in the article focuses on 2. W.R. Swanout. "A Digitalis Therap.
ponents ofA(S). including how knowledge producing strategic and task explanations Advisor with Explanations.'" Pc. Fifth

in them was used: and on justifying knowledge. Int'l Joint Conf. .4rnficial Inteilience

115

Y .- 5

: 1 JC.-1 77n. Morean Kaufmann. San Ma-
teo. Calif.. pp. 8&19-825.

-3. B. Chandrasekaran and S. Mittal. "Concep-SI tual Representation of Medical Knowledge
3 for Diagnosis by Computer. MDX and

Related Systems." in Advances in Comput-
ers. Vol. 22. M.C. Yovits. ed.. Academic

Press. New York. 1983, pp. 217-293.
4. W.J. Clancey and R. Lecainger. "Neomycin:

Reconfiguring a Rule-Based Expert Sys-

tem for Application to Teaching." in Read.
ings in Medical Artificial Intelligence.
WI. Clancey and E.H, Shortliffe. eds..
Addison-Wesley. Reading. Mass.. 1984.
pp. 361-381.

5. B. Chandrasekaran. "Generic Tasks in
Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System
Design." IEEE Expert. Vol. 1. No. 3. Fall
1986. pp. 23-30.

6. W.R. Swartout and S.W. Smoliar. "On
"Making Expert Systems More Like
Experts." Expert Systems, Vol. 4. No. 3.
1987. pp. 196-207.

7. JD. Moore and W.R. Swartout. "Pointing:A Way Toward Explanation Dialogue."
Proc. Eighth Nat'l Conf. Artificial Intelli.
gence iAAAI 90). MIT Press. Cambridge.
Mass.. pp. 457-464.

8. W.R. Swartout. "Knowledge Needed for Ex-
pen System Explanation." Future Computuin
Systems. Vol. 1. No.2. 1986. pp. 99-114.

L. Chendresokeren
directs the Al group and
is professor of computer

Iiand information science
as Ohio State Universi-
ty. He is also editor-in-
chief of IEEE Expert.
His research interests
address knowledge.
based reasoning. Chan-
drasekaran received his

BE with honors from Madras L'niversity in 1963
and his PhD from the University of Pennsvlva-
ma in 1967. Readers can reach him at 217 Bolz
Hall. Ohio State University. 2036 Neil Ave..
Columbus. Ohio. 43210: e-mail. chandrao
cis.ohio-state.edu

Wf-•h. Swwfte is
director of the Intelli-
gent System Division
and ati ciaes rsearch
professor of computerS•scift" at th USC's In-S.• fornmon Sciences In.

- stitute. His research
Sinterim include expla-
"nation and text separa.
tion. He started and led

USC/ISI's Explainable Expert Systems project.
* and he was the principal designer of the Xplaan

system at MIT. Swau•out received his bachelor s
degree from Stanford University. and his MS
and PhD in computer science from MIT. Readers
can reach him at USCASI. 4676 Admiralty Way,
Suite 1001. Manna del Rey. CA 90292-6695.

d . . 1"1
116

3 Appears in Artificial Intelligence in Design '92, J.S. Gero (ed.)

Kluwer Academic Publisher, 1992, pp. 597-616

I

DESIGN VERIFICATION THROUGH FUNCTION-
AND BEHAVIOR-ORIENTED

REPRESENTATIONS:

Bridging the gap between function and behavior

I Y. IWASAKi
Knowledge Systems Laboratory

Stanford University
701 Welch Rd., Palo Alto, CA 94304

and

B. CHANDRASEKARAN
Laboratory for At Research

Dept. of Computer & Information Science

The Ohio State University

217 B, Bolz Hall
2036 Neil Avenue

Columbus. OH 43210-1277

AbsirmeL This paper focuses on the task of design verification using both knowledge
of the suctrwe of a device and its intended functions. In particular, it addresses the

questio of when one can say a behavior predicted by a prediction system achieves the
desired function in the manner intended by the designer. We use Functional
Representation (Sembugunoorthy & Chandrasekaan 1986) to represent the function of a
device and the expected causal mechanism for achieving it. We present a formal
definition of matching between a system trajectory generated by a simulation system and
the description of a causal process to achieve a function expressed in Functional
Representation. We demonstrate behavior verification based on the definition, using two
predicted behaviors of the electrical power system of a satellite. We believe that

7 evaluating a behavior with respect to the expected causal process as well as the function
improves the chances of uncovering hidden flaws in a design that may otherwise go
undetected a an ewly stage.

1. Introduction

Simulation of the behavior of the design of a structure is an important means
for design evaluation, which must ascertain that the design achieves the
intended Auction. To achieve a robust modeling and simulation capability,
a system must be able to compose a simulation model from pieces each of

which may be applicable to a variety of situations. At the same time, in order

1
f 117

Y. IWASAKa AND B. CHANDRASEKARAN

to provide a useful feedback about the design of a device based on the result
of simulation, the system must be able to evaluate the predicted behavior with
respect to the knowledge of the function.

In this paper, we focus on the task of design verification using both
knowledge of the structure of a device and its intended functions. In
particular, we address the question of when one can say a behavior predicted
by a prediction system achieves the desired function in the manner intended
by the designer. We use Functional Representation (Sembugamoorthy &
Chandrasekaran 1986) to represent the function of a device and the expected
causal process for achieving the function. We will present a formal definition
of matching between an expected behavior and a predicted behavior.
Finally, we will demonstrate behavior verification based on the definition,
using an actual example of behavior predicted by a simulation system.

1.1 BEHAVIOR-ORIENTED AND FUNCTION-ORIENTED APPROACHES TO
MODELING

Research in model-based reasoning about physical systems has emphasized
representation of structures and reasoning about behavior from the
knowledge of their structures and physical principles. Several model-based
reasoning systems have been built (Falkenhainer & Forbms 1991, Crawford et
aL 1990, Iwasaki & Low 1991) that formulates a model of a device based on
its structure and predict its behavior. An important requirement in the
approach taken in these systems, which we shall call the behavior-oriented
approach, is that the knowledge is stored in small pieces, each representing a
conceptually independent physical phenomenon such as a physical process
or an aspect of the behavior of a component. For the pieces to be
composable, each of them must be defined in a context-independent manner
as much as possible in the sense that there is no unstated assumption about
the surroundings of a component or the function of the whole device.
These systems predict a behavior in terms of a sequence or a graph of states,
each of which is characterized by the set of applicable knowledge pieces,
implied constraints, and variable values.

This type of model-based reasoning capability is useful for a system
aimed to help in design, since it allows the system to formulate a behavior
model automatically and to simulate its behavior so that the designer can
discover behavioral implications of design decisions easily. However, an
account of behavior in the form of a sequence of states must be evaluated to
be useful for further development of the design. Does the predicted
behavior achieve the desired function? Does it do so in the way the designer
intended? These are crucial questions in providing a useful feedback to the
designer. In order for a model-based reasoning system to answer such

-I
118 -

I

ARTIICIAL niJEauGmw IN DESIGN 92

questions, it must have knowledge of the function of the device - WHAT it is
supposed to do -- and the expected behavior -- HOW it is supposed to
achieve the function.

Functional Representation (FR) is a representational scheme for the
functions and expected behavior of a device. FR represents knowledge about
devices in terms of the functions that the entire device is supposed to achieve
and also of the sequence of causal interactions among components that lead
to achievement of the functions. FR takes a top-down approach to
representing a device in contrast to the bottom-up approach of behavior-
oriented knowledge representation and reasoning schemes. In Functional
Representation, the function of the overall device is described first and the
behavior of each component is described in terms of how it contributes to the
function, while in a behavior-oriented approach, the behavior of the entire
device is inferred from those of individual components.

In order to evaluate a design, one must be able to predict the possible
behavior of the design, as well as to determine whether the predicted behavior
achieves the expected functionality. Verification that a behavior of a
designed artifact achieves the desired goal must ascertain the followir'-

(1) the overall function of the device is achieved,
(2) the expected chain of events happen in the predicted behavior, and
(3) the causal connections expected between events exist in the

predicted behavior.
The purpose of this paper is to investigate this concept of behavior

verification and provide a formal definition of behavior verification of a
design with respect to its intended functions and the expected causal
processes for achieving the functions. As an example of a model-based
reasoning system, we use DME (Device Modeling Environment) developed at
Stanford University (Iwasaki & Low 1991). Given a design of a device,
DME formulates a computational model and predicts its behavior.

This paper is organized as follows: In Section 1.2, we will briefly describe
DME. In Section 2, we formally define functions, expected behavior, and
what it means for a predicted behavior to match an expected behavior.
Section 3 presents an example of behavior verification. We conclude by
discussing future work and related work in Section 4.

1.2 DEVICE MODELING ENVIRONMENT

DME is a program developed by How Things Work project (Fikes et al.
1991). The goal of the project is to provide a computational environment
for design of electromechanical devices, and DME is the device modeling
program which forms the core of the environment. Given the topological

I

I 119

Y. IWASAKI AND B. CHANDRASECARAN

description of a device and initial conditions, DME formulates a
mathematical model and simulates its behavior.

In DME, knowledge about physical phenomena is organized into model
fragments in the knowledge base. Each model fragment represents
knowledge of a conceptually distinct physical phenomenon such as a
physical process, component behavior characteristics, etc. DMOE takes an
input description of the initial state, including the topological model of the
device, and searches the kmI ledge base for model fragments that are
applicable to the given situation. Equations to describe the behavior of the
device are formulated from the constraints associated with the set of model
fragments thus found. The equations are used to predict the behavior of the I
device qualitatively using QSIM (Kuipers 1986) or numerically. During
prediction, if there are any changes in the set of applicable model fragments,
the set of equations is updated accordingly and prediction continues with the i
new equation model.

Some model fragments represent instantaneous changes, which are
phenomena that take place too quickly to model as continuous phenomena. I
Such model fragments do not have constraints but they have consequences,
which are facts to be asserted. When an instantaneous model fragment
becomes active, a new state is generated immediately to follow the current
state, and the consequences are asserted in the new state.

A model fragment m can be interpreted as one large implication of the
form Pm =ý Em or Pm =* Rm, where Pm, Em, and Rm denote respectively
the conditions for the applicability of the model fragment, the behavior !
constraints (equations in the case of a continuous phenomenon), and the
consequences of m (in the case of a discontinuous phenomenon).

Definition 1. A device state is represented as a set of state variables (Vs}
consisting of values of all the variables of interest in the description of the
device. State variables can be either continuous or discrete.

Definition 2. A device trajectory, Tr, represents the course of behavior of the
device over time. It is a linear sequence of states.

2. What does it mean to verify that a design achieves an expected function?

In this section, we define what it means for such a simulated behavior to
achieve the expected behavior represented in FR. This requires introduction
of the notions of a causal process description (CPD) and a function in FR. A I
CPD is a causal explanation of how certain states of interest come about by
exhibiting a sequence of causal transitions. The transitions are annotated by
different types of causal explanation. 1

1

120

T

ARTIFIcAL INTELLGENCE IN DESIGN '92

Definition 3. A Causal Process Description (CPD) is defined as a pair [C, G),

where C is the applicability condition and G is a directed graph G = (N, L).
C specifies the condition under which the device is expected to behave as
specified by G. C is a necessary condition for applicability of CPD but not a
sufficient condition. N is a set of nodes and L is a set of directed links
among nodes. Each node represents a partial description of a state. There
are two distinguished nodes in N, the initial node, Ninit, and the final node,
Nfin. Each link represents a causal connection between nodes. The graph
may be cyclic, but there must be a directed path from Ninit to Njin"

A link may have an attached qualfier, By-function-<f>-oftc), where c is a
component, to indicate the conditions under which the transition will take
place. A link can also have annotations of the types, Provide(p), Iftp) and
Trigger(p), where p is a wff, to indicate the type of the causal explanation to
account for the transition.

In order for us to be able to relate a Tr and a CPD, we require that each
node in a CPD must be given a definition in the form of a wff about objects
and predicates defined in terms of model fragments attributes. We let defin)
denote such a definition of a node n. For example, the node "Battery
charging" is defined as dC/dt > 0, where C is the variable, charge-level of the
battery. With such a definition, a node in a CPD becomes a partial
description of a state in Tr using attributes defined in the model fragment
library.

Definition 3 mentions qualifiers and annotations that can be attached to
the links between the nodes in CPD. The full list of proposed annotations
can be found in (Sembugamoorthy & Chandrasekaran 1986) and (Keuneke
1991). For a link from ni to nj, an annotation By-function-<f>-oftc) means
the causal interactions going from ni to nj must involve c achieving its
junction. The purpose of a qualification is to allow a causal transition to be
explained in further detail by CPD's of component c. In contrast, qualifiers
allows one to specify further conditions on the causal transition. Provided(p)
means that condition p must hold during the causal transition. If(p) means
that the condition p must hold at state ni. Trigger(p) means that p must not
hold before ni, but must hold at some point after ni (inclusive).

In summary, a CPD describes a causal process from some perspective at
the device level, and the conditions on the causal transitions and explanations
of them are given as part of the description. Figures I and 2 show examples
of CPD's. They are for the electrical power system (EPS) aboard a satellite,
which we will use in Section 3 as an example. Nint and Nlfin in each CPD are
indicated by a box in dashed lines and a box in thick lines respectively.

1
I
! •

121

U, .

Y. IWASAM AND B. CHANDRASEKARAN

Definition 4: A function F is defined as a quintuple (TypeF, PF. DevF, CF.
GF), where

TypeF: One of (ToMake, ToMaintain, ToPrevent, ToControl).
PF: The functional goal, i.e. the wff that the function is to make

true.
Devr. The device that this function is a function of. This has to be a

model fragment in the DMEs knowledge base.
CF: The condition which specifies when the function must be

achieved.
GF: The set of CPD's describing the causal mechanism to achieve

the function.

Figure 3 shows the function of EPS. We consider four types of functions;
ToMake, ToMaintain, ToPrevent, and ToControl (Keuneke 1991). Note that
a device can have multiple functions, in which case each function will be
represeted separately. In case of a function of type ToControl, PF must be
of the following form:

(- vO fTV, ... v)
where vj's arm variables and! is some function of its arguments.

Conditions: (Shining Sun)

1 SunS ,n S __j

Provided: solar array is in a dosed circuit.
((Closed-electical-loop $ip) n (in-loop SA))
"fucti-of SA.

22 Electridty production by solar array

(12 < 0)

Provided: Battery is in a dosed circuit 12 13 Provided. Load is in a dosed
with the solar array. J circuit with the solar array.

((Closed-elcuca-loop Sip) I((Closed-clectrical-loop Sip)
r (In-loop SA) i (In-loop BA)) r (In-loop LD) , (In-loop SA))

83 Battery being charged *~Currn supledt

Figure 1: CPDM of EPS

-I

11

122

!

I ARTIWICIALR IELULGENCE IN DESIGN '92

Conditions: -(Shiring Sun) v (Active Battery-over-charged)

I ~3 Battery being discharged

S. . (dC/d. < 0)SProvh: Battery and Load are in a dosed circuit.
14 Charge-Ievel of Battery > 0

I ((Closed-.elecrical-loop Sip)- (In-loop LD)
n (In-loop BA) a C > 0)

s Current supplied to load I

Figure 2: CPD 2 of EPS

Given a device description and initial conditions, we can generate a Tr.
Suppose we also have an intended function for the device and associated
CPD's. Intuitively, we would like to say that the device achieves the function
in Tr if (1) the functional goal is achieved, (2) there are states in Tr matching
all the nodes in the CPD in the specified temporal order, and (3) for each
causal link in the CPD, there is a causal path in Tr that connects the cause to
the effect. In order to make these conditions more precise, we must define
the concept of a causal path in a trajectory. Then, we will define what it
means for a trajectory to match a CPD.

For the rest of this paper, we use the following notation: We will attach [sJ
to wif's, model fragments and variable to denote the following axioms:

pis): A wffp holds in the state s.
mrs]: The phenomenon represented by m is active in s.

v[s]: A wff that asserts the value of v holds in s.
We will use notations such as <, >, 9, and ? to express ordering among nodes
in a CPD and states in a trajectory. We write "ni < n2" where ni and 12
are nodes in a CPD to indicate that nl is strictly causally upstream of n2. For
states sl and 32 in a trajectory, "sl < s2" means that sl strictly precedes s2 in
time. Note that the ordering is partial for nodes because a node can have
multiple incoming and outgoing nodes. Ordering is total for states because a
trajectory is a linear sequence of states.

Function
TypeF: ToMaintain PF: (Powered Load) CF : T
DevF: EPS GF: CPDI, CPD2

Figure 3: The futction of EPS

1
hi

- !S

S ,

I,

Y. IWASAKI AND B. CHAIDRASEKARAN

2.1 CAUSAL DEPENDENCY IN A TRAJECTORY I
We now present the definition of a causal dependency relation between
axioms P1 and P2 in a trajectory, Tr. Intuitively, we say P2 is causally
dependent on pj, written "pl *c P2", when it can be shown in Tr that pl !
being true eventually leads to P2 being true in Tr. Before we define the
causal dependency relation among wff's more precisely, we introduce the
notion of causal ordering among state variable.

2.1.1 Causal Ordering Among Variables. Suppose we are given a system of
variables, and suppose some set of equations relate the values of these I
variables. Equations by themselves are inherently acausal and symmetric, but

even when people represent the behavior of a system by a set of equations,
they often perceive directed causal relations among variables. Causal I
ordering theory (Iwasaki & Simon 86) is used to reveal causal dependencies
among variables in a set of equations and produce a graph structure that
encodes these relations. In order to apply the procedure, one must have a set
of independent equations, each of which represents a conceptually distinct
mechanism in the situation. One must also know the variables which are
externally controlled. Such variables are called exogenous variables.

Given a set of N equations which satisfy these requirements, the first step I
of the causal ordering procedure is to isolate all the subsets of variables
whose values can be determined independently of the remaining variables.
Such a subset of variables can be found by identifying a set of n equations
which contains exactly n variables but which itself does not include a proper
subset containing the same number of equations as variables. Such subset is
called a minimal complete subset. The variables in any minimal complete I
subset are the "uncaused causes" of the system, and they are causally
independent of other variables. Each exogenous variable constitutes a
minimal complete subseLt

Next. the equations in all minimal complete subsets are removed from the
original set of equations and their variables are also removed from the
remaining equations, producing a reduced set of N - m equations in N - m 1
variables, where m is the total number of equations (and variables) in all the
minimal complete subsets. Then, a new independent subset of variables is
determined in the reduced set. This process repeats until the set can no |
longer be reduced. For each equation in the original set, the variable that
was reduced last is said to be causally dependent upon all the other variables
in the equation, and a directed graph can be generated to depict the causal
dependency structure of the entire set, with nodes representing variables and
links representing causal dependency relations among them. Also, for each
variable vin a minimalcomplee subset, we deflneD(v)to be teset of alli

4 124

I

I ARTUI7 AL INTFU IGENCE IN DESIGN '92

equations in the set. In other words, D(v) is the set of all the equations that
directly determine the value of v.

We will write v, -*ý v2 when v2 is causally dependent upon vY according
to the definition of causal ordering. When a minimal complete subset
consists of more than one variable, the causal ordering procedure does not
impose ordering among them since such a situation indicates the existence of
a feedback loop among them. In such a case, we say the variables are
interdependent and write vI ++- v2.

Even though the above description is given in terms of variables and
equations, which imply domains of continuous variables and function, the
concept applies to domains of continuous as well as discrete variables. The
"equations" in the case of discrete variables can be any axiom that can be
used to determine the value of one variable depending on other variables, as
long as such an axiom represents some conceptual mechanism in the
situation. For example, the control of a sprinkler system that turns on
between I and 2 am every day can be represented by an axiom.1 1 t time S 2 =* (On Sprinkler).

2.1.2 Causal Dependency Relations. Given the causal ordering procedure
we can now proceed to defining causal dependencies among wif's.

Definition S. The causal dependency relation, denoted ai =c aj, is defined
between two wif's, al and aj, in the descriptions of states in a trajectory Tr.
We write "ai =*c af" and say "aj depends on ai" or "ai causes aj," The
relation =c is transitive.

The following conditions specify when a wif can be said to be causally
dependent on another in Tr:

(a) If p[soJ, p[Sl]... p1s] for all states from so up to s, (in other words, p
was pan of the initial conditions and never changed), we say that pis]
is exogenous, and write o oc pisi.

(b) If there exists a state s < s such that, -pisfl, and plsj+ I]. where sj+ I is
the immediate successor of sj in Tr, and there exists m[s), such that p
e Rm, and p~sij for all si between sj+1 and sinclusive (in other words,
p becomes true at some point before s as a consequence of the
phenomenon repnmsted by m.), we say m[sil ::c pfsl.

(c) For each pe Po, we say pmss *c rns). In other words, for each
phenomenon ative in s, we say that the phenomenon being active is
dependent on its precondition being satisfied.

S(d) IfvIJ -*c '2 according to the definition in Section 2.1.1, we say vi[sj
10 v2[fs.

(e) For each equation e in D(v) for a variable v and a phenomenon mI such that e & En,, we say rn~s] =c v2[s. In other words, we say v

I
I

1 12........ ..

;| S

Y. IWASAXI AND B. CHANDRASKARAN

depends on the phenomenon giving rise to the causal relation
between v and whatever other variables v depends on.

(f) v2[s] =c vl[s] and v1[s] =*c v2[s) if v2 +-+c vi in the causal ordering
in s.

(g) v'[Sl =*c v[szJ, where s2 is the state immediately following sl, and v
the time-derivative of v in sI.

2.2 When is a function achieved?

We listed in Definition 4 different types of functions of devices and
components. In this subsection, we spell out the conditions under which a i
device is said to achieve each type of function in a trajectory.

Definition 6: LUt sz denote the final state in Tr, and Dev denote either DevFI
or one of its components. A function F is said to be achieved in a trajectory
Tr in any of the following cases depending on TypeF. In all the cases CF
must hold in the initial state of Tr. In the following, I

Case 1: When TypeF = ToMake. F is achieved by Tr if
1. 1 PF, the functional goal, holds in the final state sz. We denote this

by PF[$ZJ. And, I
1.2 There is some device variable v, and some state s in Tr, such that

v(s) =*c PF[Sz] (i.e. this fact causally depends on the operation
of the device). I

Case 2: When TypeF = ToMaintain, F is achieved in Tr if in all states s, in
Tr , the following is true: For some sj such that sj S si in Tr,
2.1 PF[sJ. and
2.2 There is some device variable v such that v[s) =*c PF[sJ.

Case 3: When TypeF = ToControl, F is achieved in Tr if
3.1 vo[SzJ = f(vi[Sz], ... vjSz]) (i.e. the functional relation holds

between the value of the controlled variable and the values of the
controlling variables in the final state),

3.2 v"lSz] =c vdsz] for I S i S n (i.e. the value of the controlled I
variable in the final state causally depends on the controlling
variables), and

3.3 There is some device variable v and some state s in Tr, such that

V(S) = vdszI
Cue 4: When TypeF = ToPrevent, F is achieved in Tr if -PF]sJ for any

ste s in Tr (.e. F is achieved in Tr ifthe finconal goal ofF does
not hold in any state). We make the closed world assumption that -p I
unless p is explicitly known to hold.

1
!

hi 1
126

I

I M INALU2IG.ICE IN DESIGN '92

Definition 7: A trajectory Tr is said to match a CPD if there is a mapping st
from nodes in the CPD to the states in Tr that satisfies the following
conditions:

. for each node nun the CPD there is a state st(n) in Tr where def(n)
holds, and

2. for any nodes nj and n2 in the CPD, st(ni) S st(n2) iff nl < n2. and
3. for each causal link I from nj to n2, there is a causal path

deftnlffst(ni)] *c def(n2)[st(n2)] in Tr, where deftnfsr(n)] denotes
that deftn) holds in the state Ot(n). Furthermore, if I has an attached
qualifier, Provided(p), p must hold for all states between st(ni) and
"st(n2) inclusive. If I has an attached annotation, By-funcrion-of, which
points to a component o, there must be a causal path ofl) •c
def(n2)[st(n2)) for some state s such that st(nl) Ss Sst(n2).

Clause I of the above definition ensures that for each node in the CPD, there
is a state in Tr that matches it. Clause 2 makes sure that the temporal
ordering of causes and effects in the CPD is preserved in the temporal
ordering of their corresponding states in Tr. Finally, Clause 3 ensures that
the causal paths exist in Tr that correspond to the causal links in the CPD.

Armed with the Definitions 1 through 7, we are now ready to state
precisely what we mean by verification that a predicted behavior achieves the
expected behavior.

Definition 8: We say that a trajectory Tr of a device achieves the expected
behavior with respect to a function F when the following conditions are met.
"Tri denotes the subsequence of Tr from the initial state up to and including
state Si:

1. F is satisfied in Tr according to Definition 6, and
2. F is achieved in the expected manner, which is verified as

Case I: if TypeF is not ToMaintain, Tr matches one of the CPD's of
F according to Definition 7,

Case 2: if TypeF is ToMaintain, for each state s in Tr, a match
between Tri and one of the CPD's exists such that sj = stwNfin)
for the final node Nfln of the CPD.

Clause I of this definition makes sure that the function is achieved in the
trajectory. Clauses 2 ensures that the function is achieved in the way the
designer intended. We must distinguish the cases where the type of the
function is ToMaintain and others, because if the function is to make or
prevent some condition, we need only to show that the condition is brought
about (or prevented) in the intended manner. However, if the function is to

1
I

I ~127?

Y. IWASAKI AND B. CHANDRASKALAN

maintain some condition throughout the trajectory, we must show that the
condition is in fact brought about in the intended manner for every state.

3. Example: EPS behavior

In this section, we demonstrate behavior verification with an example of the
electrical power system (EPS) aboard a satellite orbiting the earth (LMSC
1985). A simplified schematic diagram of the EPS is shown in Figure 4.
The components of the EPS are a solar array (SA in Figure 4), a
rechargeable nickel-cadmium battery (BA), a load representing all the
electrical loads on board (LD), a relay (KI), and a device called a charge
current controller (CCC) for controlling the relay. The solar array generates
electricity when the satellite is in the sun, supplying power to the load and
recharging the battery. The battery is a constant voltage source when it is
charged between 6 and 30 ampere-hours. When the charge level is below 6
or above 30 ampere-hours, the electromagnetic force produced increases or
decreases as it is charged or discharged.

BA: Rechargeable battery K1 Relay
CCC: Charge current controller

- Signal connection Sensor data connection
- Electrical connection

S: SFigure 4: Electical Powe System

ASince the battery can be damaged when it is charged beyond its capacity
the charge current controller opens the relays when the voltage reaches 33.8

volts to prevent the battery from being over-charged. The charge curr.nt
conlnaler (CCC)ohasactsensor connectedtothethepositiveterminal(t7)of
the btery to sebu dhe voltage. When it reahes 33.8 volts during a sun-lig•h

period, it rams on the relay K I. When the relay is energized. It opens and
breaks the electrical connection, preventing further charging of the battery
and switching the current source for the load from the solar array to the -

1
1284

'I
I ARmTOcIAL ITLTU ENCE IN DESIGN "92

f jbattery. When the relay is open or when an eclipse period begins, the
charge-level starts to decrease. When the charge-level decreases to 6.0, the
voltage will start to decrease. At 31.0 volts the CCC turns KI off to close if it
has been opened.

The main purpose of the EPS is to supply electricity to the load
constantly. This function of the EPS was shown in Figure 3, and the CPD's
for achieving the function were shown in Figures I and 2.

2.1 EPS MODEL FRAGMENTS

The structure of EPS as shown in Figure 4 is given to DM as a nection of
model fragments each representing a components and their cc nections.
These model fragments represent the static aspect of the situation, and they
are always active. In addition, there are model fragments representing
various behavioral aspects of the components. They are activated/deactivated
during the simulation according to the state of the world. Some of them are
shown below with their cond'.,,,-' (Pm), behavior constraints (Em). and
results (Rm). Voltage and r-urrent are measured at terminals. The sign
convention for current is that the current at a terminal is positive into the
component owning the terminal. For the rest of the example, we will use the

t abbreviations shown below in parentheses to refer to the model fragments.

Model fragments concerning behaviors of battery
Battery-normal-operating-range (RN)

Pm: (Rechargeable-battery $b) r) 6.0 amp-hours < (Charge-level Sb) <
30.0 amp-hours1 Em: (EMF Sb) = 33.0 volts

Battery-over-charged (BO)
Po: (Rechargeable-battery Sb) n (Charge-level Sb) > 30.0 amp-hours
Em: (EMF $b) = M+(Charge-level Sb)

Battery-under-charged (BU)
Pm: (Rechargeable-battery Sb) n (Charge-level Sb) < 6.0 amp-hours
E1 3 : (EMF $b) = M+(Charge-level Sb)

Behaviors of the solar array
Solar-array-generating (SG)

Po: (Sun SU) r) (Shining SU) r% (Solar-array Sa) n (In-closed-circuit U8)
En: (Current-thna-terminal (Plus-terminal $a)) <S0

Solar-arry-in-edlipse (SE)
Pm: (Sun SU) r) -(Shining SU) re (Solar-army U8)

Egg: (Current-thru-terminal (Plus-terminal SU)) = 0

I
I

1 129

Y. IWASMIIANDB. CHANDRASEKARAN

Solar-array-ln-open-clrcult (SO)
Pm: (Sun Ss) n~ (Shining Ss) r) (Solar-arry Sa) n~ -(In-closed-circuit $a)
Em: (Current-thru-terminal (Plus-terminal $a)) = 0

Behaviors of the charge current controllerI
Turn-ki-on (ON)

Pm: (Charge-current-controller Sccc) n (Signal (Signal-terminal-I Sccc))
= off ni (Voltage-at-terminal (Voltage-sensing-terminal Sccc)) Z!I
33.8 volts

Rm": (Signal (Signal-terminal-I $ccc)) = on
Turn-ki-off (OFF)

Pm: (Charge-current-controller $ccc) n~ (Signal (Signal-terminal-I Sccc))
= on r'i (Voltage-at-terminal (Voltage-sensing-termninal Sccc)) S
31.0 voltsI

Rm: (Signal (Signal-terminal-i $ccc)) = off

Behaviors of the relayI
Relay-closed (RC)

Pmn: (Relay Sr) r'i (Relay-closed-p $r)
Em: (voltage-at-terminal (electrical-terminal-one $r))=

(voltage-at-terminal (electrical-terminal-two $r))
(crettn-emnl(letia-eiaIn 0

(current-thni-terminal (electrical-termainal-one $r))=
Relay-open (RO)

Pm: (Relay $r) ni - (Relay-closed-p $r)
Em: (current-thni-terminal (electrical-terminal-one Sr))=

- (current-thru-terminal (electrical-terminal-two Sr))
Relay-closing (CL)

Pm: (Relay Sr) r) -(Relay-closed-p Sr) n~ (Signal (Signal-terminal Sr)=
offI

Rmj: (Relay-closed-p Sr)
Relay-opening (OP)

Pm: (Relay Sr) rN (Relay-closcd-p $r) r-i (Signal (Signal-terminal $r) =on

nm: -(Relay-closed-p $r)

In addition. there ame three model fragments used to model the sun. Sun-rise
(RISE). Sun-uet (S7) and Reset-orbit-time (RST). As it takes approximately
100 minutes for the satellite to go awound the earth once, Orbit-time is a 100-
minute dlock. which is reset to 0 when it reaches 100. We model the sun asI
rising and setting when Orbit-time - 0 and 60 respectively instead of
modeling the satellite as revolving around the earth.

130

I

I ARTFICLIAL INTEIJiENCE IN DESIGN V2

We will use the following notations for quantities.
Vi Current through terminal ti into the component owning ti

Vi Voltage measured at terminal ti

I C The charge level of the battery
Rid The resistance of the load
Rba The internal resistance of the battery

SEMF The electromotive force of the battery
Time Orbit-time

Each node in the behaviors of EPS can now be defined precisely in terms
7 of these model fragments and their attributes. Using this vocabulary, the

"function of EPS shown in Figure 3 translates to the following condition:
EPS Function: 15[s] > 0 for all s e Tr.

The precise definition of each node in CPD1 and CPD2 using these model
fragments and their attributes are shown in parentheses in Figures I and 2.

3.1 SIMULATED BEHAVIOR.

We simulated the behavior of EPS on DME. In the initial state, Time is
between 0 and 60, sun is up, the relay is closed, and the charge level is
between 6 and 30.0 amp-hours. From this initial state, a number of

I behaviors are possible. In qualitative simulation mode, because of the
ambiguity of qualitative simulation, there are multiple possible trajectories.
Tables 1 presents one of the possible trajectories of EPS generated by DME.
The variable values are shown with their magnitude and the sign of their
derivative. In a state where the derivative is undefined, the sign is shown as
x. The right most column of the table shows the set of active models in
each state. The set of all active model fragments in each state is actually
much larger, but since most of them represent components, terminals,
junctions, etc. and are active throughout the simulation, we show only the
ones that change their activation status at some point. A model fragment that
becomes activated in a given state is shown in bold. A x over a model
fragment indicates that it becomes deactivated in the given state.

3.1.1 Trajectory TrI. The behavior we consider is summarized in Table 1.
In the initial state so, since the sun is up and the relays are closed, the charge-
level is increasing. When it eventually reaches 30 amp-hours (sl), the battery
enters the over-charged state and the voltage level starts to rise. When it
reaches 33.8 (43), CCC changes the signal to on (s4), and KI opens (sS). At
this point, the solar array stops generating current, and the battery starts to
discharge. The charge level and the voltage starts to decrease. Soon, the sun
sets (s7). As the charge level continues to decrease, the battery returns to the
normal operating range (:9) It eventually becomes under-charged (l I), and

I
I
1 131

Y. IWASAKI AND B. CHANDRASEKARAN

the voltage starts to decrease below 33.0 volts. When it reaches 31.0 volts i
(s12), the signal to KI is turned off (s13), and KI closes (s14). Soon, the sun
rises again (s17), and charging resumes.

Following are equations that are generated by DME during the
simulation. On the right of each equation, we indicate the model fragment
that gives rise to the equation. "Junction" indicates that the equation was
generated as a behavior constraint of electrical junction model fragments
(not shown in Figure 4 to simplify the figure.) Note that e5' is applicable
when e5 is not, and vice versa.

el: 12 = -11 SG e7: Y5 = Rid 15 LD

e2:12 + 13 = 0 junction e8: V7 = Y5 junction
e3:13 + 14 = 0 RC e9: Y5= V4 junction
e4:14 +15+ 17 = 0 junction elO: V4 = V3 RC
es: EMF = M+(C) BO or BU ell: Y3 = V2 junction
es': EMF = 33.0 BN e12: dCldt = 17 BA

e6: Y7 = EMF + Rba 17 BA
Rid and Rba are exogenous.
The causal ordering among variables in the states where the relay is closed

is shown in Figure 5. The causal ordering when the relay is open is mostly
similar except that the links from 12 to 13 and from 13 to 14 are missing1 . In
the figure, the variable at the head of an arrow is causally dependent on the
variable at the tail. The causal links are labeled with equations that are
responsible for the link. The link labeled i is an integration link to a variable
from its derivative. Variables 15, V5, 17, and V7 are inter-dependent. The
equations responsible for their inter-dependence are e4, e6, e7 and e8.

We prove that this trajectory satisfies the expected behavior of EPS. Due
to the limitation of space, we omit the proof that the qualifiers, Provided, and
By-function-of, on causal links are satisfied. The proof of these conditions is
straightforward.

Rid , 15

RbV V6 1 V3 V2

12 .2.. 13 14 -!A 1

___________e 1 dC/dt

! i

Fqire 5: Causal ordering when KI is cklsed

I When the battery is in its normal operating range. dte causal ordering is slighdy

diffrn since es' istea of *$ is applicable, eliminating the link from C to EMF. 1

132

.-. "

j ~~AR7MFiCJAL DR4TUJGECE IN DESICN 92

Table 1: Trajectory. Trj. of BPS

I" sol bIt Ilign 12 is I? V7 c Thmlelas
-0 sk d f li + + 33 .0 040 m

i ue y ad d sad ai w n

84 W m 5Zo
0 -&%V 30-W o o.n

ad 1 due dw er Igo,0 ST s. 0.9

-7 -O ~ X - - - O

_____ ~SRO
""0 630

adc die

31.03. W4 aE PA OFF
ifl do3 de _ _ _

31 .0 mja"~o owF C
'12 die __ _ _ __ _ _

.0 L SE R0W A

'no I.c

1333

-.4

Y. IWASAKI AND B. CHANDRASElARAN

(1) That the function of EPS is satisfied by behavior Trl is clear from Table
1 since 5 > 0 in all states. That EPS or its components takes part in bringing
about the fulfillment of the goal is subsumed by the proof in part (2) and
(3).

(2) The following proof applies for s being one of states so to s4, and sl 7
through $22, where the condition of CPDI, (Shining Sun), holds.

Let st(nh) = ss(n2) = st(nj) = ss(n4) - s. It follows that st(ni) S st(n2) -
st(s3) •st(s4). Since (Shining Sun)/ 1 (< 12 O)[s1 r) (> dC/dt O)(sl r (>
15 0))], we have defjn)[s) for all nin CPD1.
Proof of l: (Shining Sun))s] =*c 121s].

(Shining Sun)[s] =*c SG[s) because of Definition 5.c.
SG/sJ =*c 121s1 because of Definition 5.e.
It follows that (Shining Sun)!s) =:c 1214).

Proof of 12:121J] =*c dCIdtfs]
12 -+ dC/dt in s as shown in Figure 5.
It follows that 12(s5]=c dCt/df) because of Definition 5.d.

Proof of 13: 121s1 =*c 151s]
12"-€c5 ins as shown in Figure 5.
It follows that 12!4) =c 15 because of Definition 5.d.

Therefore, CPDI of EPS is achieved in states so, 1,, and s17 through s23 of
Tri.

(3) The following is true for s being one of states s5 through s16. where the
condition of CPD2, -(Shining Sun) ui (Active BO), holds.

Let s(n5) - ss(n6) =- . It follows that st(ns) S s:(n6).
Since (< dC/dt O)fs ri (> 15 0)(s], we have def(n)[s) for all nodes n in
CPD2.
Proof of 4: 151s) =*c C/dr:lsJ t dCdtlsi =*c 15[s]

15 -+c dCldt in s as shown in Figure 5. It follows that 15/s) =*c dC/dr)s]
because of Definition 5.d.

Therefore, CPD2 of EPS Is achieved in states s2 through s16 of Trl.

3. Discussion

In this paper, we formalized a number of notions that were relatively
informally specified in the Functional Representation language and defined
matching between an expected behavior represented in Functional
Representation and a predicted behavior. We also demonstrated its use in
deciding whether a particular trajectory of a device achieves an expected
behavior.

13

134 [

I •ACA INTEJGENCE IN DESGN *92

I Our primary goal is to use the knowledge of functions and expected
behavior for the purpose of design verification. It is important that the
definition of behavior verification we have presented is not biased towards
any particular perspective about what are more important than others as a
causal factor. In other words, it does not require that the function or the
expected behavior be described from a particular point of view. This
definition of verification of a predicted behavior with respect to a function
and an expected behavior is inclusive enough to allow a trajectory to match
many representations of functions or expected behaviors. Likewise, there
can be any number of trajectories that can be shown to match a given
expected behavior as there can be any number of designs that accomplish the
same functionality. Thus, the mapping between trajectories and an expected
behavior is many to many. However, if the goal is to verify that a predicted
behavior achieves a given expected behavior, this non-uniqueness of a match
is not a problem. Our definition does not establish that the given expected
behavior is the only correct causal story for a given trajectory, nor that the
trajectory is the only correct way to achieve the function. However, the
definition does establish that a given design achieves the function in an
expected manner, which is what is needed for our purpose of design
verification.

Our next step is to implement a program that takes a functional
representation and a trajectory and automatically proves whether or not theI expected behavior is realized in the trajectory.

3.1 RELATED WORK

i Bradshaw and Young (1991) and Franke (1991) have also proposed
representations of the knowledge of a purpose and their use in design. They
represent the intended function in a manner that is similar to the way

I functions are represented in Functional Representation. Bradshaw and
Young built a system called Doris, which uses knowledge of purpose for
evaluating behaviors generated by qualitative simulation as well as for

I diagnosis and explanation.
The focus of Frmnke's work on representing functions is slightly different

from ours or Bradshaw and Young in that he represents the purpose of a
design modification and not that of a whole device. He developed a
rep rsnaon scheme, called TED, in which he expresses the purpose for
making a modification 8 in a structure using the same function types a those
in Functional Represetation. Thus, in order to prove that a function is
achieved by a modification & he must compare the behavior of structure M
and that of M', which is M with the modification 5. Another Important
characteristic of TED's representation of functions is that it can be a

1

I 135

Y. IWASAKI AND&. CHANDRASCARAN

sequence (not necessarily a linear) of partial desciptions. The representation
of a function in TED typically says "6 guarantees oa" where a is a sequence,
called scenario, of partial descriptions. The sequence of partial descriptions
is matched against states in a sequence of qualitative states generated by
QSIM.

The most important difference between our work and the works by
Franke's or by Bradshaw and Young's is that we take not only the functions
but also the causal interactions into account in evaluating behavior. We feel I
that it is important to test whether it is in fact the causal processes intended by
the designer that are responsible for bringing about the achievement of the
functional goal, since the satisfaction of the functional goal does not I
necessarily indicate that the design is functioning as intended. We believe
that evaluating a trajectory with respect to the causal process as well as the
function allows one to uncover hidden flaws in a design which may otherwise
go undetected.

Bradshaw, J. A. and Young, R. M.: 1991, Evaluating Design Using Knowledge of
Purpose and Knowledge of Stnictute. IEEE Evert April.

Crawford, J., Farquhar, A., and Kuipers B.: 1990, QPC: A Compiler from Physical I
Models into Qualitative Diffeential Equtions. Proceeings of" Egh• h Nadonal
Conference on An#fdal Inteilence.

Falkenhainer, B. and Forbus, K.: 1988, Setting up Large-Scale Qualitative Models.
Proceedngs of 1e Se wmu Nad•oAl Conference on Ar4ldal liAutace.

Fikes. R., Gruber, T.. Iwasuki, Y., Levy, A. and Nayak, P.: 1991. How Things Work
Project Overview. Technical Report. KSL 91-70, Knowledge Sysems Laboratory,
Stmanfrd Univerity. F

Franke, D. W.: 1991, Deriving and Using Descriptions of Purpose. IEEE Evert,

Iwasakd. Y. and Low, C. M.: 1991. Model Generation and Simlatim of Device
Behavior with Continuous and Discret Changes. Technical Report KSL-91-69, I
Knowledge Symtms Laboratory, Sitanod University.

Iwasaki, Y. and Simon, H.A.:1986, Causality in Device Behavior. Artificial
Ineligence 29.

Kenukeks A.: 1991. Device Representation: The Sigaificance of Functional
Knw dg FW Evrp, Aprl

Kadmn B- 1986, Q~uelitmve Shenluion Ani~dal Iwisreice 29.
LMSQ 1984, SuPper SyStms Modii System Procedwe for Po&int and Control

S$m s(SE-23. Val V). ILckhee Missiles and Space Coma y document

S Imqmmahy, V. and am uB .: 1986, PFctima Repmumntaton of 1
Devices and Compiladmn of Dhpouc PmbIm-40vig Sysums, in oloesh.
IL. and Riesbeak C.. (ads), E.peri.ence Memory. aid Readmag, Lawre.cs
Edbom Amacio. Hilldde.l NM.

136 1

r4

CFRL: A Language for Specifying the Causal Functionality of Engineered Devices

Marcos Vescovi Yuni Iwasaki Richard Fikes B. Chandrasekaran
Knowledge Systems Laboratory Laboratory for Al Research

Stanford University The Ohio State University
701 Welch Road. Bldg C 217 B. Bolz Hall, 2036 Neil Avenue

Palo Alto, CA 94304 Columbus, OH 43210-1277
vescoviiwasaki,fies@ksl.stanford.edu chandra@cis.ohio-sme.edu

Abstractl device from influencing the system's reasoning methods
and representation of physical principles in order to

Understanding the design of an engineered device requires guarantee a high level of "objective truth" in the predicted

both knowledge of the general physical principles that behavior. In contrast, in their work based on the FR
determine the behavior of the device and knowledge of what (Functional Representation) language (Sembugamoorthy
the device is intended to do (i.e., its functional & Chandmsekaran 1986) (Keuneke 1986), Chandrasekaran
specification). However. the majority of work in model- and his colleagues have focused mostly on modeling a
based reasoning about device behavior has focused on device in terms of what the device is intended to do and
modeling a device in terms of general physical principles or how those intentions are to be accomplished through

intended functionality, but not both. In order to use both causal interactions among components of the device.
functional and behavioral knowledge in understanding a Both types of knowledge, functional and behavioral.
device design, it is crucial that the functional knowledge is seem to be indispensable in fully understanding a device
represented in such a way that it has a clear interpretation in see O to e i ndsp n owle in tendedgfunceion
terms of actual behavior. We propose a new formalism for esn On the one hand, knowledge of intended fncton
representing device functions with well-defined semantics in alone does not enable one to reason about what a device
terms of actual behavior. We call the language CFRL might do when it is placed in an unexpected condition or to
(Causal Functional Representation Language). CFRL infer the behavior of an unfamiliar device from its
allows the specification of conditions that a behavior must structure. On the other hand, knowledge of device
satisfy, such as occurrence of a temporal sequence of sructure and generl physical principles may allow one to
expected events and causal relations among the events and predict how the device will behave under a given
the behavior of device components. We have used CFRL as condition, but without knowledge of the intended
the basis for a functional verification program which functions, it is impossible to determine if the predicted
determines whether a behavior achieves an intended behavior is a desirable one, or what aspect of the behavior!fnction.

is significant.

Introduction In order to use both functional and behavioral
knowledge in understanding a device design, it is crucial
that the functional knowledge is represented in such a way

Understanding the design of an engineered device requires that it has a clear interprtaion in terms of actual behavior.
both knowledge of the general physical principles that Suppose for example. that the functiom of a chuae cb reat

determine the behavior of the device and knowledge of contoller is to prevent damage to a battery by cutting off
what the device is intended to do (i.e., its functional the charge current when the battery is fully charged. To be
specification). However, the majority of work in model- able to determine whether this function is actually
based reasoning about device behavior has focused on acle by an obser bhio futie iceathe

modeling a device in terms of general physical principles aopltais of the function must specify conditions that
or intended functionality, but not both. For example, most can be evaluated against the behavior. Such conditions
of the work in qualitative physics has been concerned with might include occurrence of a temporal sequence of
predicting the behavior of a device given its physical expected events and causal relations among the events and
structure and knowledge of general physical principles. In the components. Without a clear semantics given to a
that work, gret impamUce has beean plwed on preventing r-plesentsam of fuion in tum$ of am l behavior, it
a pre-conceived notion of an intended function of the would be impossible to evaluate a design based on its

p Pclid l A behavior mad tmeded fuinctio
t gWhile it is impmw for a ftu ieom specificaton to11t a A maot b the firse tsm agency is .uPAd in put by have a cler iteqirpetion in tmms of actual behavio. it isO ne A. a ri, e R e s e a r c P r oj e c t ., u w y. "A O . O r o " W . a l s o d w i t "l f or th e I mla n u g f o r W dc f y i ft f u a c din to

monitored by NASA A.m Romoeuh Car mude gran NAG 2-
581, ard by NASA Ames Reseach Cuttr udndr grat NCC 2. be independent of amy portictlar sysetemusd for
537. ChutAsekwaos mesth is suppored by the Advactled simulaion. Though ter are a number of Alternative
Research Projects Agpncy by mema of AFOSR contract F. methods for predicting behavior, such as numerical
4962049-C-01 10 and AFOSRI un89-0290. simuladiom with discrete time sups or qulitative

S< 13 7

l,,.,,,,•p,,• _,___. ____........ _______,__-___ •.:_ _ _-.' ,.',__--'_"___-_______-____'

simulation, a functional specification at some abstract level a set of instances of object classes that must exist and a set
should be intuitively understandable without specifying a of relations that must hold among those objects and their
particular simulation mechanism. If a functional attributes for the phenomenon to occur. The consequences
specification language was dependent on a specific specify the functional relations the phenomenon will cause
simulation language or mechanism, a separate functional to hold among the objects and their attibutes.
specification laIguage would be needed for each different Model fragments can represent phenomena as occurring
simulation language, which is clearly undesirable. What is continuously while the fragments conditions hold or as
needed is a functional specification language that has events that occur instantaneously when the conditions
sufficient expressive power to support descriptions of the become true. The consequences of a model fragment that
desired functions of a variety of devices. At the same represents an event ae facts to be aserved resulting from
time, the language should be clear enough so that for each the event, whereas the consequences of a model fragment
simulation mechanism used, it can be given an that represents a continuous process are sentences (e.g.,
unambiguous interpretation in terms of a simulated ordinary differential equations) which are true while the
behavior, phenomena is occurring.

An essential element in the description of a function is When there exists at time t a set of objects represented
causality. In order to say that a device has achieved a by model fragments mi to mj that satisfy the conditions of
function, which may be expressed as a condition on the a model fragment m., we say that an instance of mo is
state of the world, one must show not only that the active at that time. We will call mi through mj the
condition is satisfied but also that the device has pardc*pat of the mo instance.
participated in the causal process that has brought about Representation of physical knowledge in term of model
the condition. For example, when an engineer designs a fragments is a generalization of the representation of
thermostat to keep room temperature constart, the design physical processes and individuals in Qualitative Process
embodies her idea about how the device is to work. In Theory (Forbus 1984). There are several systems.
fact. the essential part of her knowledge of its function is including the Device Modeling Environment (DME)
the expected causal chain of events in which it will take (Iwasaki & Low 1991) the Qualitative Process Engine
part in achieving the goal. Thus, a representation (QPE) (Forbus 1989), and the Qualitative Process
formalism of functions must provide a means of Compiler (QPC) (Crawford. Farquhar & Kuipers), that use
expressing knowledge about such causal processes. similar repesentaions for physical knowledge to predict

We have developed a new representational fomalism the behavior of physical devices over time. Though the
for representing device functions called CFRL (Causal ways these systems actually perform prediction differ, the
Functional Representation Language) that allows functions basic idea behind all of them is die following. For a given
to be expressed in terms of expected causal chains of situation, the system identifies active model fragment
events. We have also provided the language with a well- instances by evaluating their conditions. The active
defined semantics in terms of the type of behavior instances give rise to equations representing the functional
representation widely used in model-based, qualitative relations that must hold among variables asa consequence
simulation. Finally, we have used CFRL as the basis for a of the phenomena taking place. The equations are then
functional verification program which determines whether used to detmine dhe next sate into which the device must
a behavior achieves an intended function. Move.

This paper is organized as follows: We first describe the We assume that a behavior is a linear sequence of states.
representation of behavior over time in terms of which the The output of a qualimive simulation system such as QPE,
semantics of CFRL will be defined and our assumptions DME, and QPC is usually a tree or a paph of swes. Each
about the modeling and simulation schemes that produce pethrough the graph represents a possible behavior over
such a behavior description. We then present the CFRL time. We will refer to such a path, Le., a linear sequence
language and define its semantics in terms of behavior. ofsaaesuasujer.
We close with a discussion and summary. A state represents a situation in which the physical

system being modeled is in at a particiua time. "A
Behavior Rep wtalon paicular me her can be a time point or imvaL We

will not assume any specific model of time in this pow.
Before describing CFRL. we briefly describe she bhawvo The only amsmspdons about time that we make am: (1) the
representaion in terms of which the senmanics of CFRL times associated with different sta do nm overlap (2)
will be defined. A physical situation is modeled as a when a stms1 immediaelysfolDows i in a behavior, there
collection of mnodstfrqm. each of which represents a is no other "tme" doat falls between the times (pariods)
physical object or a conceptually distinct physical auoclmc d withig aid a sod (3) every am ehas a unique
phenomenon, such as a particul aspect of component scceso (ndecmeor) ules it as dt tinal (initial) otle,
behavior or a physical process. A model fragment in which cam it has one
rpresenting a phenomenon specifles a set of conditions In onr modding scheme, each m has a M of variable
under which the phenomenon occurs ad a set of values and pmdicses dont bold in the sM In addition.
consequences of de phenomeo. The conditio specify

138

Ieach state has a set of active model fragment instances
representing the phenomena that are occurring in the state. CFRL

An Electrical Power System We now describe the syntax and semantics of CFRL.
Figures 2 shows an example of the representation of a

This section presents the device that we will use function of the EPS.
throughout the rest of this paper as an example. The
device is the electrical power system (EPS) aboard an DF: ?eps. Eleczrical-power-system
Earth orbiting satellite (Lockheed 1984). A simplified CF. Object-set ?sun: Sun ?I: electrical-load
schematic diagram of the EPS is shown in Figure 1. The Conditions: T
main purpose of the EPS is to supply a constant source of GF.
electricity to the satellite's other subsystems. The solar (ALWAYS
array generates electricity when the satellite is in the sun, (AND
supplying power to the load and recharging the battery. (-> (AND (Shining-p ?sun)
The battery is a constant voltage source when it is charged (Closed-p (Relay-component ?eps)))
between 6 and 30 ampere-hours. When the charge level is CPDI)
below 6 ampere-hours, the voltage output decreases as (-> (OR (NOT (Shining-p ?sun))
battery discharges. When the charge level is above 30 (Open-p (Relay-component ?eps)))
ampere-hours, the voltage output increases as it is charged. CPD2)

(-> (AND (> (Electromouve-fomce
SA K1 (Battery-component ?eps))

9zr4===33.8)I (Closed-p (Relay-component ?eps)))
CPD3)

(-> (AND (< (Electromotive-force
(Battery-componen ?eps))

31.0)
(Open-p (Relay-component ?eps)))

CPD4)))

+ LD Figure 2-a: Function F1 of EPS

A We consider a function to be an agent's belief about how
SA: Solar array an object is to be used in some context to achieve some
LD: Electrical load on board effect. Thus, our representation of a function specifies the
BA: Rechargeable battery object. the context, and the effecL However, it does not
CCC: Charge current controller specify an agent which is implicitly assumed to be
K 1: Relay whoever is using the representation. Formally, a function

Figure 1: An Electrical Power Syssem. is defined as follows.

Delfitlos 1: Function
Since the battery can be damaged when it is charged A function F is a triplet {DF. CF, GFJ, where:

beyond its capacity, the charge current controller opens the
relay when the voltage exceeds a theshold to prevent the DF detoes the device of which F is a function.
battery from being over-charged. The controller senses due CF denotes the context in which the device is to
voltage via a sensor connected to the positive terminal of function.
the battery. When the voltage is rum dun 33.8 volts. GF denotes the functional goal to be achieved.
te controlleurns on te relay KI. When the relay is
energized, it oes nd eak s e eletical connection o The deviw specification. DF, specifies dr elm of the
prevent further chard g of the Nieaty, thereby switching device and tf symbol by which he device will be refed
the currentsource to dug load from t h olmaMy dod tointherestfthedefinitionofF. lU example iFigue
battery. When the relay is open or when a eclipse period 2-a swas that tue function is of an Elecruical-power-
begins, de baery's charge-level simm so decrease. When system which wil be rteof o a ?eP in the rest of the
the battery becomes under-chrg f volh e decreases. definition.
When it reaches 31.0 volts, the CCC ams reay KI off to
close iL

I-

139

'h ... , n

n2(> (Current (.terminal (Load-component ?epps)) 0)

4 ni: (Shining-p ?sun) (by-function-of (solar-aw"aycomponent ?elm))

n6: (> (dEltrecchrgeomotive-force ?ps)/d)

(ntt7-cmo:n (>.) 0)fet(trinl(odcmonn e)0

CPD2:casl

CPD4:

(Battey-component ?eps)) 3.0) (by-function-of (Controller-componene ?eps))

q Fipwe 2-b: ~causal <fFm~sF fBS

n~: Opn- (ely-omonnt1,s)
CPI4

140

I
The notion of a device function assumes some physical described by the destination node, and i5 means

context in which the device is placed, and CF is a the state described by the source node must either
specification of such a context. CF consists of two pans, a be the same as or precede the state described by

set of objects and a set of conditions on those objects. For the destiation state.
example, Figure 2-a states that there must exist an instance causal-Jtstifleation: If an arc is "causal", one canIof Sun and an instance of electrical load. The conditions attach a justification for the causal relation. A
must hold throughout a behavior in order for the function justification takes the form of a Boolean
to be verified in the behavior, combination of the following predicates:

Formally, the Object-set of a CF is a list of pairs (vr (by-hnntion-o(<model-fragment>).
type), where var is a symbol to be used in the description (with-participation-of cmodel-fragment>).
of F to refer to the object, and type is the type (class) of the The meaning of these predicates will be explained
object. Conditions is a logical expression involving the after we ge a precise definition of a causal
variables defined in the Object-set and DF. rate i am es.

The third pat of the function definition, GF. specifies relation among nodes.
the behavior to be achieved by the device used in a specific In order to refer to attributes of arcs, we will use the
manner. GF of a function is represented as a Boolean attribute name (e.g., soume, destination, etc.) as a function
combination of Causal Process Descriptions (CPDs) and of the arc as in "source(al)".

_ conditions involving the variables defined in DF and the We will write ni =*c nj when there is a causal arc fm
Object-set of CF. Each CPD is an abstract description of ni to nj. As a condition specified by a node can be a
expected behavior in terms of a causal sequence of events. Boolean combination of conditions, the following defines
In the following. we formally define at CPD. the meaning of causal relations among them, where el, e2,

Causal Process Descriptions (CPD's) and e3 are condition
a) (ANDel e2)-c e3 a

Figure 2-b shows examples of CPD's which are part of the (AND (el =•c e3) (e2 =•c e3))
functional specification of the EPS. A CPD is a directed b) el -c (AND 42 e)
graph, in which each node describes a state and each arc
describes a temporal and (optionally) a causal relation (AND (01 -*c e2 Xel =*c e3))

between states. c) (OR el e2) =ýc e3 N
A node specifies a condition on a state. The condition is (OR (el =*c e3) (02 =c e3))

a logical sentence about the state of the world at some time
using the variables defined in the DF and CF portons of d) el ==c (OR e2 e3)
the function. For example, the node nJ in Figure 2-b states (OR Wel =c C2) (el =*c e3))

the condition that the sun be shining. One or more nodes
Srin each CPD are distinguished as the initial node(s). In the Semantics of a CPD

figures, the initial nodes are indicated with a thick oval. A
condition specified by a node can contain AND and OR as A CPD can be considered to be an abstract specification of
logical connectives. When the meaning is clear, we will a behavior. Unlike a trajectory, it does not specify every
use the name of a node to refer to the condition represented state or everything known about each state. It onlySby the node. specifies some of the facts that should be true during theThe arcs in a CPD are directed and specify temporal and course of the behavior and partial temporal/causal

causal relations among nodes. An arc has the following orderings among those facts. The intuitive meaning of a
attributes: CPD is that

source: The node at the tail of the arc. - For each node in the CPD, there must be a state in the
destlaldom: The node at the head of the arc. trajectory in which the condition specified by the node is

causal-flog: An indicator of whether -the sedatied, and

relationship between the states described by the • For each pair of nodes directly connected by an arc, the
source and destination nodes is causal. (The causal and temporal relaiotslups specified by the arc
relatknship is always temporal.) mus exis in th uvjeW .

lemporml-rdutim: u. <, or S. indicating the
temporal relatim between the tms described by In order for us to evaluate these conditiom agint a
the source and destinaion nodes a means that behavior, we must define their meanings in mmns of the
die sum described by the two nodes ar w be the languages used to describe a (simulated or actual)
turn a . h m ea dot desibed by the behvior. In this Paper, we will do so in terms of the
source node must stritly precede the state behavior repemmation formalism described earlier.

I1
'1 141

However. note that CFRL itself is independent of the
particular behavior representation language used, and that 0 If v is an exogenous variable. o = Y~l.
one would need to provide different definitions in order to g) For all variables v such that v' -> v is in the causal
evaluate functional specifications in CFRL against ordering 2 in s:
behaviors generated by a different scheme.

We first present the definition of a causal depenncy (i) v[s] • vfs];
relation between sentences in a trajectory and the causality (ii) If pis] is the equation through which v depends
constraints that can be associated with a CPD arc. We on v, then p[s --* vls].
then define the requirements for a trajectory to match a
CPD and for a trajectory to match a function goal. Finally, h) For all variables v' such that v and V are in a feedback
we use those definitions to define the requirements for a loop in the causal ordering in r.
trajectory to achieve a function. (i) v'[s] i vfs] and vfs] = v'(s]

A few words about notation: We will attach Is) to a
sentence to denote the sentence holds in state s. Therefore, (ii) For each equation p such that p is part of the
p(sf means that p holds in state s. We will also associate a feedback loop and v appears in p. pis] - v[$s.state with models and variables to denote sentences as i) f sl is the state immediately following s. and dv is the
follows: time-defivative of v in s. then dv[s] = V[Sil].

mis): An instance of model fragment m is active in t.
vis]: The value of variable v in s. (i.e., an axiom of 2. -* is transitive.

the form (= (value v s) c) for some constant c.)
We will use the relations <, >, -, and S to express When pi - Pj, we will say that py is causally dependent

temporal ordering among states in a trajectory. For on pi or that pi causes Pj. Given statementsp~sjl and pisjlexample, for states sl and s2 in a trajectory, "sl < 52" such that pisil - p[sjJ, we call the causal sequence of
means that sl strictly precedes s2 in time. Note that statements starting from pisi] and leading to ptsjJ the
ordering is total for states in a trajectory because a causal path from pisi) to p[sj].
trajectory is a linear sequence of states, while the ordering Having defined the meaning of a causal relation among
is partial for states in a CPD. statements, we can now explain the meaning of theIntuitively, we say P2 is causally dependent on pl in predicates used to justify causal arcs in a CPD.
trajectory Tr. written Pi =P2, when it can be shown that
Pi being true in Tr eventually leads top2 being true in Tr. Definition 3: Camsalit contraints

Given an arc a from node ni to nx1 in a CPD and a modelDefinition 2: Causal Dependency fragment m, causality constraints of the following form canThe causal dependency relation, •, is a binary relation be associated with a:
between sentences in a trajectory with the following a) (by-faacdon-of m) - meaning that the causal path fromproperties: af an intane of

ni to nj includes a consequence of an instance of m.I. For all atomic sentences p, states s, model fragments m,and vriabls v:b) (wfth-pardelpetdoe-of m) - meaning that the causalpath from ni to nj includes a consequence of an instnce
a) If plso). p~sil. ... pisl (i.e., ifp is part of the initial of a model fragment in which an instance of m

conditions and is never changed), then o -- p[s]. participates.
(And we say that pisl is exogenous.) These predicates do not imply specific commitments as

b) If model fragment m represents an event and asserts p, to how the components participate in the causal process.
and if there exists a state sj such that sj < s, -p[Sji. They give the designer the capability of using whatever
misfJ, and p[skJ for all k > j (i.e., p became true at component has the desired function, independent of its
some point before s due to m), then misj]) pfs). particular mechanism.

We can now present the definitions on whichc) If model fragment n represents a continuous process verificatim of a trajectory with respect to a CPD is based.
and has p as a consequence, aid if thee exists a state Dfinition 4: Matn of a stat and a node
sj such that sj < s, -plsji, misjl . and p$1s for all k
> j (i.e., p became ue at some point befom s due to A stan s in a trjectoy and a node n in a CPD am said to
m), then ffsjl aspsl. marck if the conditim specified in a is true in s.

Having defined the meaning of a causal relation amongd) If model l. gment m has p as a condition, then phi s n in a tajectoury, we can now define hmein

e) If v occurs in p as a term and p is not visJ, then vIs) 2Ca ordering is a technique for deuratiag cansal
-pIh)l. ~epem - y relations mon variablea in a s of equatiom

(twesak a Simn 19W66)

142 j
- - ,] '.

of the causal and temporal relations between linked nodes Quantifiers align the initial nodes of the CPDs in their
of a CPD. scope as well as specify whether the described behavior

Definition S: Satisfying the constraints of an are must hold in every subsequence of the trajectory or only in
some of them. The connectives and quantifiers are to be

If a is an arc from node ni to nj in a CPD. then the causal interpreted as specified in the following definition of
and temporal constraints of a are satisfied at states si and sj matching a GF and a trajectory.
if both of the following conditions are satisfie dD
a) si < (n or 5• sj when ni < (= or:) nj , respectively.a)~~~ ~ SjDerr)swen1 <m) epeoveyn 7: Matching of a GF anid a trajectory

Let T be a trajectory consisting of a linear sequence of m
b) If arc a is causal and if ni and/or nj are Boolean states, s1 through sm; Ti denote subsequences of T from si

combinations of conditions, then the causal relation through sm; and <cpd-exp> denote a Boolean combination
between ni and nj can be rewritten as a Boolean of CPD's and conditions. Then:
combination of causal relations of the form ei *c ej, a) (ALWAYS <cpd-exp>) matches T iff <cpd-exp>
where ei and ej are atomic conditions. eifsi) j a Ti for each Ti (i = Ito in).

is satisfied if for every variable3 vi used in ei and every
variable .vj used in ej, vijsil * vj(sj1 and the causal b) (SOMETIMES <cpd-exp>) matches T iff <cpd-exp>
path from vi[sij to vj[sj] satisfies the causal matches Ti for some Ti (i = 1 to m).

justification on a. c) (AND <cpd-expo> <cpd-erpI > ...) matches T iff every

Definition 6: Matching of a CPD and a trajectory conjunct matches T.
Let T be h jajectory consisting of a linear sequence of m d) (OR <cpd-exPO> <cpd-expj> ...) matches T iff at least
states, sl through sin. Let CPDI be a CPD consisting of a one of the disjuncts matches T.
set of nodes, N1, and a set of arcs, Al. CPDI and T are) (NOT <cpd-exp>) matches T if <cpd-exp> does not
said to match iff all the following conditions are satisfied: matchOT.match T.

a) The initial nodes of CPDI match the initial state sl in T.

b) For each remaining node n in NI, there exists a state in <cpd-exPo> does not match T or <cpd-expl> does
T that matches n such that for every arc a in Al from match T.
nodes ni to nj, the temporal and causal constraints in initial ofSg) Condition c nmatches T iff c is tru hnde inta tte o
specified by a are satisfied by the states matched to ni T.
and Finally, we complete the definition of the meaning of a

Representation of the Functional Goal (GF) function, as follows:

The functional goal of a function (denoted by GF) is Definition 8: A trajectory achieving a function
represented as an expression consisting of CPDs, A trajectory T achieves a function F when the condition
conditions, quantifiers, and Boolean connectives. Nested specified in CF holds throughout T and GF matches T.
expressions using connectives are allowed, but a quantifier
cannot appear in the scope of another quantifier. Each Discussion and Summary
CPD must appear in the scope of one and only one
quantifier. There are two quantifiers, ALWAYS and In this paper, we have presented CFRL, a language for
SOMETIMES. Connectives are AND, OR, IMPLIES, and specifying an expected function of a device and defined its
wNOT. Syntactically, the connectives aTe used in the sare semantics in terms of the type of behavior representation
way as ordinary logical connectives. The following s widely used in model-based qualitative simulation. The
example GF expressions: language allows one to explicitly state the physical context

(ALWAYS (AND cpdl cpd2 (OR cpd3 Cpd))) in which the function is to be achieved andtro describe the
(OR (ALWAYS cpdl) function a an expaecd causal sequence of events. Since

(SOMETIME (AND cPd2 cpd3))) the concept of causal interactions among components is
(ALWAYS (NOT cpdl)) essential to the understanding of a function, the language

__allows explicit representation of causal interctions andconstraints on such inmuutlons.
3 The variables used in CFRL can be different from the coCRL is based on the work on Functional

variables in terms of which the tajectory states ae defin ce Repsesedaon the w o F cn al
CFRL descriptions represent a device-level perspective, while Representation (Sembugmoorthy & Chandrasekaran
stat in the tra)ectory represent a comapont or physica poess 1986), and it is a further extension of dhe work presemd in
level perspective. Corespondences between CPD variables and (Sl w i a 1992). We have exiended die
traectory variables are made when the function is matched expressive pow of the function specificato languagesFagainst a specific trajectory.

I1
J ~143

described in those papers and have provided a formal
foundation for the semantics of the resulting language. References

Franke (Franke 1991) also proposed matching design
intent with simulated behavior. Unlike other work on Bradshaw J.A.; and Young R.M. 1991. Evaluating Design
functional representation, he focuses on representing the Using Knowledge of Purpose and Knowledge of Structure.
purpose of a design modification and not that of a device IEEE Expert April.
itself. He developed a representation scheme, called TED,
in which he expresses the purpose for making a Crawford J.; Farquhar A.; and Kuipers B. 1990. QPC : A
modification in a structure. TED's representation of a Compiler from Physical Models to Qualitative Differential
function can be a sequence (not necessarily a linear) of Equations. In Proceedings of the Eight National
partial descriptions, which is matched against states in a Conference on Artificial Intelligence.
sequence of qualitative states generated by QSIM. To
prove that a function is achieved by a modification, he Forbus K.D. 1984. Qualitative Process Theory. Artificial
compares the behavior of the original structure and that of Intelligence 24.
the modified structure.

Bradshaw and Young (Bradshaw & Young 1991) also Forbus, K. D. 1989. The Qualitative Process Engine. In
represent the intended function in a manner similar to Readings in Qualitative Reasoning about Physical
Functional Representation. They built a system called Reds in a ndade R ean au E hsioalDORI, wich sesthe nowedgegenrate by Systems. Weld, D. S., and de Kleer, I. Eds. MorganDORIS, which uses the knowledge generated by Kaufmiuin.
qualitative simulation for evaluating device behavior as
well as for diagnosis and explanation. Franke D.W. 1991. Deriving and Using Descriptions of

The most important characteristic that distinguishes our
work from those by Franke and by Bradshaw and Young is Purpose. IEEE Expert April.

the central role causal knowledge plays in CFRL. We
conjecture that causal relations are an essential part of Iwasaki Y.; and Simon H.A. 1986. Causality in device
functional knowledge, and that representation of functional behavior. Artificial Intelligence 29:3-32.
knowledge must allow explicit description of the causal
processes involved. Furthermore, verification of a Iwasaki Y.; and Low C.M. 1991. Model Generation and
function must ascertain that the expected causal chain of Simulation of Device Behavior with Continuous and
events take place, since the satisfaction of the functional Discrete Change. Technical Report, KSL, Dept. of
goal alone does not necessarily indicate that the device is Computer Science, Stanford University.
functioning as intended.

Because the semantics of CFRL is defined in terms of Iwasaki Y.; and Chandrasekaran B. 1992. Design
matching between a behavior and a functional Verification through Function and Behavior-Oriented
specification, the language is immediately useful for the Representations : Bridging the gap between Function and
purpose of behavior verification. We have designed and Behavior. In Proceedings of the Second International
implemented an algorithm that verifies a behavior Conference on Artificial Intelligence in Design, Pittsburgh.

* produced by the DME system with respect to a function
specified in CFRL as defined in this paper. Initial testing Keuneke A. 1989. Machine Understanding of Devices;
of the algorithm has included verifying the functional Causal Explanation of Diagnostic Conclusions. Ph.D.
specifications of the EPS as given above. Care must be thesis, Laboratory for Al Research, Dept. of Computer &
taken in designing such an algorithm to assure that Information Science, The Ohio State University.
exponential search is not required to find a match between
a trajectory and a CPD. We are currently in the process of Lockheed Missiles and Space Company. 1984. doc
analyzing the computational complexity of the problem #D889545A. SE-23, Vol. 5.and our algorithm.We expect formal functional specifications to have Sembugamoorthy V.; and Chandrasekaran B. 1986.

many uses throughout the life cycle of a device (Iwasaki, Functional Representation of Devices and Compilation of
et al 1993). For exampk, in the early sages of die design Diagnostic Problem-Solving Systems. In Koloder J.L.
process, designers often do "top down' design by and Riesbeck C.K. (editors), Experience, Memory and
incrementally introducing assumptions about device Reasoning. Lawrence Eribum Associatews Hillsdale NJ.
structure and causality relationships. Such design
evolution could be expressed as incremental mrfments of
a CFRL functional specification. DM1 could asso a
designer in this functional refinemmat p aoceu by assri-ng

Sthat each successive specification is indeed a refinemeat of I
its predecessor so that any device tha satisfies the
refinement also satisfies the predecessor.

144

-J

j 17w Things Are Intended to Work:
Capturing Functional Knowledge in Device Design

I Yumi Iwasaki Richard Flkes Marcos Vescovi B. Chandrasekaran
Knowledge Systems Laboratory Laboratory for Al Research

Stanford University The Ohio State University

701 Welch Road, Bldg C 217 B, Bolz Hall, 2036 Neil Avenue
Palo Alto, CA 94304 Columbus, OH 43210-1277

Abstract' As the air pressure falls, the spring pulls the side of the

capsule outward. The arm rises, causing the rocking

When designing a device, the final product of the bar to slacken the chain. The hairspring unwinds.

design process is usually considered to be a physical movin dhe pointer couser-clockwie uil the chain is

specification of a device. However, the design of the puiled Aou=
causal mechanism underlying the physical Such explanations refer to parts of the structure and
specification, i.e. how the device is intended to work describe how it works in terms of the sequence of causal
to achieve its function, is a product just as important as interactions among the parts this lead to the desired result.
the physical specification, if not more. Capturing this In other words, such explanations and the drawings they
knowledge of causal mechanism is necessary in order accompany describe the device structure along with the
to understand the physical specification of the device conceptual causal mechanis• underlying the strutm.

_ as well as to evaluate and refine the specifications When designing a device, the final product of the design
during the design process. Despite the importance of process is usually considered to be a physical specification
such knowledge, existing CAD tools do not support its of a device. However, the desipg of the causal mechanism
explicit representation or manipulation. We describe a underlying the physical specification is a product just as
design support system under development in which important as the physical specification, if not moe. Gero

knowledge of both the causal mechanism and the makes this point clear in his model of the design process
physical structure of a device being designed is shown in Figure I [Gero, 19901. Germ argue that. except in
explicitly represented and manipulated. The system a trivial design pxroblem. a s'uctum is not Swarmted directly

allows the designer to provide functional front die requirements. In his model of design synthesisd a

specifications at various levels of abstraction in a specification of the expected behavior is generated frot the
language called CFRL (Causal Functional requiremens 2 , and the physical mcUtM is generated from
Representation Language). The CFRL specification the expected behavior. In that model the expected behavior
acquired from the user enables the system to evaluate corresponds to the expected causal sequence of interactions.
the physical specification as it is being developed in i.e. how the device is to work.

I order to provide useful feedback to the designer.
Furthermore. functional specifications provide an S D
important basis for recording the enginceers designS~rationale.

I Introduction , .---. • ,

Understanding/how a device waft' requires understadig Be; Expecte hd ionm P. p (i.. raimnma)
the causal sequences at events that achieve the function of B A vion 0. Ded p
the device. Books em bow man-ma- m or tnural devices"I work a= filled with dawiings of stcumm of devices S: Saumcus
accomperti by e a such as do Wo example -. hmdmu
of an uentoid bummw (Macaulay, 19681: - -I. O im

1The r ythe ran d-e u•t d ie s is u•sponmd in put by 1 : Madl -4 of n d asip prce. (m. 101
the Advoced Rusreh Projects ApSay. " Order UV07
monmaxud by NASA Ame; Resh Comer dar pwm NAG 2-

I 581. aud by NASA Amu Raw•met Cumr uai V= NCC 2.
537. C ue, kn'a r wevnk Is I-pp I it, die AdvwAd 2 GM Gdab q d us i"W - asd du.g with
Raese rch Apnsy by mais of A)MR cemon P14N20. F in Rpmg 1. Hewevw ia ds pIar. we wlCl 0se ,s h nmn-C-01 10 aid AFOSR Irsa 89-0M5. "wropdai ms io avi oo i does wocnie r do i

I "anation" eo enlm ihla what he calls laqame bb~lw.

145

Capturing this knowledge of how the device is to work to verification program which determines whether a behavior
achieve its function is important in order to understand the achieves an intended function.
physical specification of the device as well as to evaluate In this section, we give a brief overview of CFRL. CFRL.
and refine the specificazins during the design process One is fully described in [Vescovi et al. 19931. Before
can even view the design of a conceptual causal mechanism describing CMRL. we present the device that we will use
as driving the generation of a physical specification. throughout the paper as an example. The device is the
Despite the importance of such knowledge. existing CAD electrical power system (EPS) aboard an Earth-orbiting
tools do not facilitate its explicit representation or satellite (Lockheed, 19841. A simplified schematic diagram
manipulation. of the EPS is shown in Figure 2. The main purpose of the

According to Gero. the design process involves the EPS is to supply a constant source of electricity to the
following types of activities to manipulate the four types of satellite's other subsystems. The solar array generates
information shown in Figure 1. electricity when the satellite is in the sun, supplying power

Forulaion Trnsfrmig rquiemets o epeced o th ie sand recharging the battery. When the satellite isFormlaton:Trasforingreqireentsto xpeted in a shadow, the battery supplies power to the loadi. Sincebehavior.F -#Be the battery can be damaged when itis charged beyond its
Syntheasis: Transforming expected behavior to a capacity, die charge current controller opens the relay when

structure. Be -*S. the voltae exceeds a threshold to prevent the battery from
Analysis: Deriving behavior fron a structure. S -* Bs being over-charged.
Evaluation: Comparing the predicted and expected

behaviors. Bs #-* BeSAK
Reformulation: Reformulating the expected behavior+

based on evaluation results (S. BS) -* Be ,
Description: Producing a description of the designed

structure. S --#D
A comprehensive design support system needs to suipport r c

multiple iterations through all those steps, since any non-
trivial design problem will require many such iterations.
We are extending our Device Modeling Environment
(DME) system [Iwasaki and Low, 19911 to provide such LD kuAlo nbw SA.SOWeuam
support and to enable explicit representation and BA. Rechagesi bum" KX Re*a
manipulation of knowledge of both the causal mechanism CCC: Cluige cmumrin controller
and the physical structure of a device being desgned The
system allows the designer to provide functional -- Sipiglcontection - Electrcal canowi~ton
specifications at various levels of abstractiont insa language
called CFRL (Causal Functional Representation Language).
The CFRL specification acquired fronm the use enablles the Fipv. 2. Ehcaical Powc Syimm
system to evaluate the physical specification as it is being
developed in order to provide useful feedback go the CFRL allows one to explicitly state the physical, context
designer. Furthermore. functional specifications provide an in which a funiction is to be achieved and to describe a
important basis for recording the engineces design rationale function as an expected causal sequence of events. Since

This Paper describes the use of CMRL in the extended the concept of causal interactions among components is
version of DME. We firs describe CFRL olid then illustate essential to the understaniding of a function, the langusge
the capabilities of the new system by presenting a allows explicit representation of causal interaiction and
hypothetical design scenario. We conclude with a constraints on such interactionsi. Figur 3 shows an
discussion of our current status aid relatd wo&k examaple of the represenamion of an EPS f~unction

Formally, a function F is defined as atriplet (DF. CF,
2 CFRL GA),whom-

CML is a formadum we hve deveoped for tepresenting DF dewnos fte dev-ice of which Fr is a function.
the functions and expected behavior of a devce Ift 1110 CF denotes th contem in Which th devic, is to
one to represent knowledg of the fuctane *a a devic is xa
intended to achieve enid als of the sieuence of caual GF denowe a dumcipuiom of fte fuactionell pde to be
interactons amnog its compMW e ug Ibs tee achievemenat achieved.
of the functions. In CMRL, the function of die overall The tmoto of a device fctio~m asames usomihsiadevice isdescribed flrtand doebehdvo -im clico-mp--o--nm- contsta is which the devic ispacd mCFs5is described in WINlS Of how it coitrltes to the Powian spciicla Mud see a omaCFcms.ftw uS, a

We have provided the lanuag with a weloefe ~ seek a infcondiam Q anss at t woe p.m. a
semantics in wmen ofa be ior abrouudnti widl med Of ..6 .w U O a hodae ani dies mi oa 711
in modd-aell Ie ~. -ms,e imudookm (Vested sr i .19931, finode. to he lged h hee bea is mor.ro
and we hav used CpRU!.e the basi for S helb eaeg lonto sb 110 yd e

146

GFc. the goal to be achieved by the function, is Beas the seatc of CFRL is deruned in terms of
represented as a Boolean combination of Causal Process matching a functional specification to a device behavior, the
Desci'ipdnors (CPDs). Each CPD is an abstac description language is immediately useful for design verification. in
of expected behavior in terms of a causa sequence of Figure 4, we show an example of matching a CPD to an
events. The abstracted behavior is represented as a directed EPS behavior generated by a qualiasive simulator [Iwaskid
graph in which each node describes a state and each arc and Low. 19911. The left portion of Figure 4 shows put of
describes a temporal and (optionally) a causal relation an BPS function. (The notation has bee changed slightly
between states. for legibility.) The right portion shows parn of a predicted

_______________________ behavior for EPS. Since the [F part becomes true at state
DFi- ?eps Electrical-power-system As4 4 is matchedi against node W). Nodes Q2 and n3 match
Cir Object-set: ?sun Sun,. Condition: T with e5 and s6. The temporal constraint on the arcs& atm

clearly satisfied since 04 <c 05 < 6. The way this portion of
GF: (ALWAYS the behavior was simulated shows the existence of the

(IF (ANJD (> (Electromotive-force following causal path involving the controller and the relay:I(Battery-component Ueps)) Voltage-bittery > 33.8 [01) -- Turn-signal-on 104)
33.8) =* Signal-controia=on IsS5)=. Relay-open (s6J.

(Closed-p (Relay-component Ueps))) Thus. as required by the am in the CPD, the functioning
THEN CPD3)) of the controller plays a role in causing the condition

CPD3:specified in node n2 to become tru and fth functioning of
the relay plays a role in causing the condition specified in

al: (>(Electromotiv..forceBwamy-conponsmn ?eps)) 33.8 node n3 to become true.

causaL < (by-functdon-of (Controflhr-oamponent ?eps)) IFVog-am>3. S

and Reamngo~
2: (Ope-p (Reay-comonau ?n)) R$ay4RelayoSay>3

ca" THEN ReayCle __ r tinznul f

ii(c(d(Stored-chaire (Battery-component ?eps~y&) 0 al a.DBa >,33.8 S

Figure 3: EPS Function in CFRL -Cn Ge) d Chawsi-Diaway >30

A node specifies a condition on a state. The condition is 2 p -cna an0
a logical sentence that must hold in a state of the world at
some time using the variables defined in DF and CF. The CausaI, 4L z
arcs in a CPD are directed and specify temporal and causal by-himcthm-afReltay) Shiplao-p (Sun)
relations among nodes. An arc has the following attributes: ReltAly-Open
causal-flag: An indicator of whedier the relationship ChgiBny>3

between the states described by the source and destination 03 4day-Ope -nodes is causal. sjielCconvol -oan
temporal-rebdhi: a. <. or t, in adicng die temporal

eltmbetweenh dwMa descrbd by the saume uAd _ _ _ _ _ _ _ _ _

destinatio nodes. = weim dist dio ses descried by
the two nodes s o wbe din eni sum, -c moma de son Figmw 4. Exmpe of macking a CPD ae a behavimr
described by the s- , node muKn strictly preede the
sunl deecuihd by die desdanaton node, and % meon die 3 A Design Support Systemn
state described by die source node mus eiuhu be the
same as or prcede die qa descrbed by die deetiaMio A comprehensive dieig. suppor rsystem sid to support
SUNt. multple imadans ftiooog all do ipe of doign kicluding

I'rnll -u~ad If a Me is "cmaml. one cem attach a formulation syANahsia anaylyis, evulumim, rehmlatieon.
justificatOnl (fo din Ca"na reation. A Justiflcala takes and fl I PCIF d 0 sinc MY Mn-fivisi du. problem will
die form of a Boolean combinmln of die pradicaMe by. tqvbsakmay sockh nadtii. Fm d 0-UnUaOM W dMX*Owi i
fame*Je4if (<ccoponwm;,) and wll~autdpadsm.a requlremsnm atd the nj in Ge's model, reqnksmuast

a (~ccmpaaun). Thos gvsicas = Mdt to V=ef the as rarely complelely known a pnrLoi Eves known
pincieuof a &a de Ic c oum in a puticulu panics requinsemes ohm chinp ftft the desig 1 1 1-s1 a

of a carnal pram..VM pr nsot AB lowed for in mWr ft"ma models Of doe

147

design process. During the process of generating and I
evaluating alternative designs. the designer may discover
unforeseen consequences of given requirements or features
of the environment that have effects on the performance. power-suwpy (lxc-
As a consequence, the requirements are likely to change
many times. A practical design environment must support-
such incremental acquisition and evolution of the ____________________

requirements. Our goal is to develop a dtesdign spot1
system that can facilitate all these activities by: Figure 6: Top-level physical speciflctato of BPS
*Providing languages for describing both device structure
and functional specifications at various levels of The designer first decides to refine the power-supply

incrmenal aquiitio ofcomponent in Figure 6 by selecting a specific class of
suppotingdevices as a power supply. The system, using its

that must be satisfied by the device and properties of the coPnmpnt library, displays fth following options:
environment in which the device is expected to operate. Power-supply options: battery, solar array, thermal

*Providing analysis tools for evaluating the design through generatorI
simulation and for verifying that the simulated behavior The user selects "battery". The physical specification is
sautisfes the functional specification. refined to include a battery as the power supply. The user
We view the design process as one of paralle refinement wants to see the behavioral implication of this selection.

of two type of specifications: physical and functional. The The systems performs qualitative simulation of this abstract
two specifications are closely linked in many ways. The Physical specificationl using its generic knowledge of
functional specification drives development of the physical batteries. The simulation results. as shown in Figure 7,
specification by providing the goals to be achieved, The indicate that thes battery will run out of power at some
functional specification refers to parts of the physical unspecified time t, after which the load will not be supplied
specification in order to explain how different components power.
are to interact with each other to achieve the overall ____________________

function. The physical specification must include at least Simulailon rmsutsI
all the components that are referenced in the functional
specification and all connections tha enable them to (CL.1)O

turn may suggest additional functions that are needed.
Finally, the functional specification provides an important
part of the rationale for the physical specification as well as
the evaluation criteria for design.

The following section describes the design environment0
through a hypothetical design scenario

3.1 Hypothetical Design Scenario

The given task is to design an electrical power supply (EPS)
for an Earth orbiting satellite. The top-level goal is Fig=r 7: Qualitative simulaten rook I

expressedin ______asshowninFigure_5 The systems verification module compares this predicted

Dp: ?q&: Electrical-power-systam behavior with the top-level functional specification andinforms the use thot the fuction is not satisfied since theCF: Object-sei ?=c Sun. Ml Electrical-leadl battry fails to supply power afte soine time, Forthurmore
CarAitionua T causal analysis by the verificatias moduel revokl that the

Up: (ALWAYS CPOO) hilure tD provift powe ciuslly depotds am the cqimity of

CPD& anwnP i alysis neubi pump the ussr to rub te fbs nctional
specificaton by cmg "AL WAYSO to jbr t < 20 ya*

mad,. Und by adding the camamaint that do elecaical kead in 100)
(PWd7)The usm now uba lbs syam to describ Mypw of

__ __ __ __ batteres tha ca isad* dthe constroom The systm,
- g :Tewkdtw fi using its aMmy bowled bows dsInb poss~t type of

F~gueS: he m~leeI ~m ofIFSbatteries thot co meeit dthee o ie~ and lirs their
It says tha lbs powu Vpply genera power. =C appyn do in f ý wy .Mam Onof fit]

electrillyto 1fth load The physica spcfla -a s h iem5i h eeb mS yea
point, shown in Rpgm 6, is very simple. I hwsta duns blory Chwn tha Uo tdný s in wmm. ab
isa e1ecuIOcal l0ad caMeMOO 1 It apower-spply. for unein amteilhue She afdma ame w aa dot the

148 j

weight of the EPS must be less than 50 kg and rules out
using a battery as the power supply. aetlCntans Fntoa osrit

The user now returns to the list of alternatives supplied by Ernetlcetaa ucielgUtlE

the system and selects a generator as the power supply. The r For ever 100 mnimuts, boad = 100 wa"cnst~ant
component knowledge base contains knowledge about die a samlight is available fmr (Weight ?EPS) < 50 irg
priori requirements of each type of component for its K]operation. in the case of geneatgors. the requirements -Sx: Fuec~x)
include the avaiability of some type of fuel such as oil.
coal, gas or uaranum. Since the system does not know FIUI 8b. Refined consiairas
enough about the environment in which the EPS will

displays this requirement. which leads the user to specify simulating its behavior. Predicted behavior indlicates the
the en vironmental constraint that there is no fuel aid tofIlrle possibility of the battery heating up and eventually
out use of a generator. becoming damaged. Noticing the battery heating up

Similarly, the user considers solar arrays and is prsnteld reminds the user that the scientific equipment on board die
with the requirement that sun light be available. The user salieshuda be exposed to high temperature She
adds fth environmental constraint that sun light is available adids the functional constrint that the temperatur Of the
only for 70 minutes out of every 100 minutes aid rule out EPS should not exceed 400 C. Causal analysis of the states:
soa arra ys. tin which dhe battery heats up and becomes damaged reveals

Since none of the options for a power supply preseted by tha overhaging of die battery is the cause.
the system fulfills the functional goal. the designer decides The dsigner modifies the design again to include a
to combine batteries and solar arays. so that the solar array controller, whose behavior she specifies to be opening theIcan recharge the battery as well as provide power while the connection between the solar arra and the rest of the circuit
sun light is available, and the battery can provide Power when the battery becomes fully charged and closing it
when sun light is nol available. She modifies the functional otewie Thi new design is shown in FiMgue a and 9b.
and physical specifications accordingly. Sh f eu rfie It also shows the functional specificto is refie to
the physical specification by choosing a nickel-cadmium include the function of the controller. The lower part of die
battery. These steps produce the specifications and functional specification shws the behavior of the conrwoller
constraints shown in Figure 8a Said 8b. as specified by the designer.

FunctionalsiSpec
OF:- (AND (ALWAYS (if (shining-p ?sun) dimn C7PD2))FucmiSe

(ALWAYS, (if -(shining-p ?sun) then CPD3))) OF: (AND (ALWAYS (if (AND -(Fuly-humld ?x)
I (Shining-p 7a))
CPD2:RUNthen CPO2))

n2-1 (Shninjp ?sn) MOO~o(ALWAYS (if (OR (Fully-6armdt U1)
-(Shining-p ?saun))

ce" 0123: (Powred 91)then P))

n2-2: (Generating ?y) P2

CPD3: clb-i(oee

rgnI9 L- I(enrtig

Figure U Refind ftnedonal and physical speeficeaim CM1 C "fb 9

Fig.. faPimnim paalmeahga n

149

refinement of functional specifications along with phys
ftysical p specifications. CFRL is used to express the intenaco

function of the device to be designed and how the funicumo
is to be achieved through causal interactions of its

OWDW(LA"?1)compMOnnS. Knowledge of the intended function of the
device alow the System to evaluate tie design of the
physical stutr during the design process to provide

(COMOWC)usful feedback to the designer even at an ealy stage of die

(Salm ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ n aM Y mieetda a xa fteeitngM isyse
DME already contains model formulation and simulation
facilities, a device structur edtr nla explanation
facility [Gruber and Gender. effiA dcient algrilhmn

Fi= b:Phsialspdim wtinnga canohrol for autom~atically formulating an appropriate simulation
Fiswe9b: hysial ~model for a given query has been developed and

Simulating this new design reveals chatteing behavior of piud(Iwaiski and Levy, 1993). We have also
the controller. The designer modifies the threshold for impie-mented a behavior verification program based on
closing the controller in CPD5 to ci such tda di < cO to CFR Evm ie al. 19931.

eliinae cancng.As Gert points out, designing the expected behavior, ie..elimiate hatteing.what tho device is to achieve and how, is an important part

3.2 Smmary of die entire design pr cess Furthermore, in practical
deinproblems, h requirements are nom fully known

To smmaize th deignsuport ystm dscrbedin his initially but they wce modified. augmented, and arefied
setion sumaie the desloingn smupprt s: ecie ti during the design proc- es partly in response to analysis

SC~t~fl as te folowig ~results of the design being developed. Therefore, a design
" Allows specification at various levels of abstraction of die environment must support such incremental acquisition of
physical structure and die intended futnctionality of die reqjunýunenaM as well an functional spcfications
device being designed. The functionality is represented A design support system needs to maintain a history of
using CFRL and describes what dihe device is to achieve the desig pn process including development of die functional
and how. and physical specification, acquisition of requirements, and

" Aids analysis of the design by providing simulation analysis Performed of intermiediate dewsigs icluding the
facilities which can automatically formulae a simulation deskrbl of undesirble beaviors discovered which led to
model of a given design and predict its behavior. At an further refinement of die design. Such a rord ican be used
early design stage, simulation can be performed lawte o recnstuct not auly rationale for die design of the
qualitatively to uncover possible undesirable behaviors, physical structure, but also rationale for requirements and
The system also provides causal analysis of the functionul qcftos
undesirable behaviors to help refine die design. There has been significant previous work on both

" Aids evaluation of die design by avetrkaifi on facility represenmatioa of ftectionnd itsuse in reuosing about
that compares a predicted behavior against the fucinl physical devices. CPRL is bused on the work on Functional
specification in CFRL to determine whether thredite Rersntto Sembugamoorthy and Chandaseckaran,
behavior achieves the desired functon. 1986], and it is a f- ther extension at doe wait prsee in

" Aids in selection of components by presenting (Iwauaki sod Chandruselaran, 199]. We have extended
alternatives and their chyarcueriecs, usting t component die expressive power of the language describedl in those
library indexed by function. papers, and have provided a formal fiondation of the

" Allows incremental acquisition and refinement Of various semantics of the lanuag oo malte possible its use fordesign requirements, including functional and verification of design. PF=Mk (1991L sad Iraslaaw andenvironmenal Conssiam~ Young [1991) dlo IF su-at the inunde function in a
The final P Frodcts of a design process using this design seMer sMaha toFincdr 'Rapm.emod An imporwis

envionent incldsl hsicRadlan uctiondlspecificaions characteristic that distingoishes CPNI from the work of
as well as a co Implem list of rquhm"Men sad a desc*riptio iuBt adftw. sd Young is tu role omm knowledge
Of the Operating esvkOM- The ftiomdo spedcediau plays in CPU). and its use . verificatioin. Our work is
should include a deaM~ de'ip-tio'n- of what the device is based on th co*jcan do amin 1iae -1 an eurnial I
expected to do. bow it Is expected ID do it. and tinder what Part ot fuMCtional knowlede, sd that explicit
circumstanMs Pu~amhuore, the histor of the design UpUUi dA vurfcadam of soth k ihaM is ipr
Pr-cess will be maintained in order to eable poea-fom im-GU~is*01s te dei a chliu dam hmiudgl.
reconustuctian o die design rtionale. Lie and L 11"11 mw a sMaid~d tio Petween two

Mm uof dsigmradeuk (1) areegd e of do -
4 DaiimmdCath mactivity of ds deign amn sw (2) wan=a0i how the

designed uribet Madn -pm hutimlides. The j
In this paper we hae" described a duas. d'~ esipudi.k sasuppqN uwd~k dpw rqalwn doe
environment whic allows eXPlici rpenm an d lee or of It b an MP dM g 8 &Den

IIS

discussed by Chandrasekaran et al (19931. As such. the
system we have described concentrates mostly on acquiring [Iwasaki and Levy, 19931 Yumi Iwasaki and Alon Levy.

*information about the structural and behavioral aspects of Automated Model Selection for Simulation. In the
*the device to be designed, but does aol handle the full ranige Procedings of the Seventh International Workshop on

of possible t"pa of design rationale. Than has been much Qualitative Reasoning about Physical Systems. Orcas
work on development of systems for design rationale Island, WA, 1993.
capture (Klein, 1993; Fischer et al. 1991]. Ia contrat t0ourtIwork, most of them concentrate on capturing the second [Iwasaki and Low, 19911 Yumi Iwasald and Cho Meng
type of rationale in the form of argumentation structure Low. Model Generation and Simulation of Device Behavior
(pros and cons) for individua features of the design. Few with Continuou and Discrete Change. Technical Report
offer a representation formalism expressive enough to KSL-91..69, Dept. of Computer Science, Stanford
capture detailed functional knowledge of how the design is University. 1991.
intended to achieve its goal, nor do they treat the
development of the functional specification as a distinct [Klein, 1993] Mark Klein. Capturing Design Rationale in'I activity in the design process. We believe that a Concurrent Engineering Teams. IEEE Computer. 26(1):39-comprehenisive design support system must be able to 47 199.
represent and reason about both types of information, and
we intend to extend our system to handle the (fill range of aLe an LAi, 199113. Lee. and K-Y. Isi. Whaes in a Design
information involved in device desgn. Rationale? Journal of Human Computer Interaction, 6(3-

Acknowledgements)202,193
[Locktheed, 1984] Lockheed Missiles and Space Company.IWe would like to thank Steve Cousins, William Fung, and 3MM Systems Procedure for Electrical Power Subsystem.

Hiang.Kwee Ho for their contributions to the discussions doc #D689545A. SE-23, Vol. 3.1984.
during which the extensions to DME described in this paper
were refined. [Macaulay. 1988] David Macaulay. The Way Things Work.
References Houghton Mifiin Company, Boston, 1988&

(Sembugamoorthy and Chandrasekaran. 1986] V.I(Bradshaw and Young, 19911 J.A. Bradshaw and R.M. Sembugamoorthy and B. CadseuLFunctional
Young. Evaluating Design Using Knowledge of Purpose Representation of Devices and Compilation of Diagnostic
and Knowledge of Structure. IEEE Expert. April 199 1. Problem-Solving Systems. In Kolodner I.L. and Riesbeck

C.K. (editors), Experience, Memory and Reasoning,
[Chandrasekaran et al. 19931 B. CadseanAshok Lawtence Eribaum Associates Hilladals NJ, 1966.
Goel and Yumi Iwasaki.* Functional Representation as
Design Rationale. IEEE Computer. 26(l): 48-56, January (Vescovi et Al. 1993 Marcos Vescovi, Yumi Iwasaki,
1993. Rchard Fikes and B. C-a-dIa-e-ar-mL C3RL* A Language

for Specifying the Causal Functionality of Engineered
(Fischer et al. 1991] G. Fischer et al. Making Devices. In Proceedings of the Eleventh National{Argumentation Serve Design. Journal of Human Computer Conference on Artificial Intelligence, Washington D.C.,
Interaction, 6(3-4):393-4 19, 1991. July 199. American Association for Artificial Intelligence.

[Franke, 19911 David W. Franke. Deriving and Using
Descriptions of Purpose. IEEE Expert. April 1991.

(Gero, 1990 John Gierm Design Prtoltypes: A Knowledge
Representation Schema for Design. Al Magazine. 11l(4):2&.
36. winter 1990.

(Gautier and Gruber. 1993 Patfice Gaute and Thomas
Grber. Generating Explanations of Devices Behavior

UigCompositional Modeling and Carnal Ordering. In
Proceedings of the Eleventh National Conference onI -rtificial Intelligence, Washington D.C., July 1993.
American Associaton for Artificial Inaslligence.

(Iwuasal and Chnkae M,12] Yuni Iwasaki and B.
Chandasewan Design Verification through Function umd
Behavior-Orieeuusd Repmeentstions: Bridgiog the gpp
between Function and Behavior. In Procedings of die
Second Imnleraional Conferene on Aitificlal Imieligencs in
Design PdiAbw 1992.

Appears in Computational Intelligence, 8(2), 1992, pp. 216-222

I
QP is More Than SPQR and Dynamical Systems Theory:I Response to Sacks and Doyle

B. Chandrasekaran
Dept of Computer & Information Science

The Ohio State University
217B, Bolz Hail

2036 Neil Avenue

Columbus, OH 43210-1277

Ph 614-292.0923
Fax 614-292.9021

Email: ChandraOcis.ohio-state.edu
August 7, 1991

1 Where I Agree

fI have followed, from a distance born of partly convergent and partly divergent goals, the
research that has gone on in the name of "Qualitative Physics"(QP). The term QP is
normally taken to mean reasoning about the physical world. A good deal of this work,
however, has concentrated on prediction of behavior of physical configurations for which
equational models from Physics can be written down in a tractable way (in contrast to,
say, complex biological systems). Another part of this work has gone on in the domain of
modeling functions and malfunctions of devime, and causal processes that participate in
them. There has also been a body of work that has been called "naive physics," an attempt
at modeling the commonsense knowledge of the physical world.

Sacks and Doyle's paper (hereinafter S&D) is very useful in bringing to light the diffi-
culties with in one type of QP research, namely, prediction of behavior of certain types of

r physical systems. While I find the technical points made by S&D seem to be instructive
overall, I think that the vision that they outline for a "new" QP needs to be significantly
broadened.

Let me first review what I take to be the main technical point of the paper. For the
behavior prediction task, the physical system is modeled as a vector of state variables of
interest. ModdaIg includes spedication, for each variable, of how a change in that variable
affects oth4r vadablu, spedcally what changes in other variables follow. (For the kinds of
systems cosdered, these reatioas we acausal, but if one part of the relation is taken to
be the case, th other Is the erect. For example, in Newton's Law, F a m a, if the force
is taken as the caem, the acceleration can be viewed as the elfect, and vice versa.) TheI physical system is characterized by this (causal) model, which I s all all M. The behavior
prediction task is to calculate or infer the values of al the dependent variables as chanes
in some of the independent variables ae initiated.

When the variables ae real numbers and the relationship between the dhne in values
of the variables is known completely and is given as a differential, the situation is fully char.

I-

, • 152

I

acterized by a set of simultaneous differential equations. Classical Physics teaches us how
to set up such differentials for many physical systems. The theory of differential equations I
provides the calculus by which behavior can be predicted. This is all well-established as
part of applied physics and mathematics.

However, the version of the prediction problem that QP theory attempts to solve is one
where the input is known only qualitatively, or when the physical system itself is only qual-
itatively characterized. Under these conditions, we need new techniques by which behavior
can be predicted. and several investigators have proposed such techniques (which S&D la-
bel SPQR techniques). As S&D show, while there are differences between the proposed
techniques, all of them represent the relations between variables in some qualitative form
(sips of changes around a "normal" value or monotonic relations). (That is, M - we can
now call it .q,.j - contains only qualitative relations between state variables.) There are
corresponding proposals for calculi for prediction of behavior. These calculi share a style of
inference in which the changes in the values of independent variables are propagated using
the relations in M.fq. until, to the extent the underlying ambiguities allow, the effects on
all the variables are obtained.

S&D show that the calculi that have been offered in QP research do not perform par-
ticularly well. They claim that if one has a qualitative equation, then qualitative analysis
using knowledge of advanced dynamical analysis can produce better results.

2 Why Do the QP Calculi Have Trouble?

What characteristic of the QP methods give them this disadvantage? SkD blame the
qualitative language itself, that it misses relevant distinctions. Of course missing some
distinctions comes with the territory for qualitative languages. But there is another reason
for the difficulties faced by the QP calculi: the sequence of inferences mirrors the sequence
of local causal interactions of the variables as described by the relations in the qualitative
model, Af,,. That is, prediction is performed by literally "simulating" the system using the
relations in .,.g. Sack's dynamical system analysis is not restricted by this property, it uses
"global" techniques which directly generate qualitative analyses of the solution space. These
techniques in some sense use much more knowledge of the mathematics of dynamical systems
than is available in MW or the QP calculi. (A similar situation pertains to the causal
ordering analysis of Iwasaki and Simon [Pwasali and Simon, 19866 versus that by de~leer
and Brown. The latter arrives at the causal ordering by followig a series of local causal
transitions, whbi the former is a global analysis of dependencies.) Others have recopnized
the Importam at this property of the QP calculi: in (Forbus, 1966, Kuipers, 19861 similar
observations about the distinction between information low in the analysis and the low of
causality In the system are made.

Then is also an additional problem in the QP calculi: Mjw only contain Informaton

about the specific physical system, the relations between variables ae at on level of abstrac-
tion, and the calculi are relatively impoverished in inferential power. All human reasoning j
takes place with the beanet of substantial background knowledge about other abstractions
and generalization rules. For example, a hmaon might be able to us the knowledge tham

163

J!.

reaching the same state again and again means that the system is in a cyclic state. and
may make the inferential jump, even without advanced mathematical knowledge about
dynamical systems.

The QP calculi seem to have been designed under some implicit constraints, namely.3 that they display some of the perceived properties of human reasoning about the physical
world: that humans often appear to combine causal relations recursively, and in cases where
they have the structure of the physical system available, trace the topology of the physical
system to follow the -flow of causality." I will argue that QP techniques should aim to use
the heuristic power of human reasoning even more, while employing the power of formal
analysis to clearly defined subproblems where such techniques are needed. Thus the issue is
broadened to include: What should the connection of QP research be to human common-
sense knowledge and reasoning about the physical world? Is Newtonian physical modeling
sufficient for QP. or necessary for all the goals of QP? If one were only interested in pro-
ducing a technology that assists in reasoning about the physical world, can one develop this
technology without to some degree being concerned with human commonsense knowledge
and reasoning methods? My concern is to ensure that qualitative physics research has a
significant place not only for mathematically sophisticated analysis techniques as S&D pro-
pose, but also for a whole spectrum of issues concerning the sources of the power in human
reasoning about the physical world.

3 Human qualitative reasoning about the physical world

A trained physicist and an unschooled man-on-the-street start with a common ontology
and a shared cognitive architecture. The physicist leans, and may add to, a specialized
ontology as well, and acquires a number of modeling and analytical techniques. We need
to sort out these distinct types of knowledge about the physical world that come into play
in human reasoning.

1. A commonsenue ontoog which predates and is in fact used by modern science: space,
time, flow, physical objects, cause, state, perceptual primitives such as shapes, and so on.
The commonsense ontology also comes with some terms that are given specific technical
meaninp by science, but in general the terms in this ontology ar experientially and logically
so fundameutal that scientific theories are built on the infrastructure of this ontology. Early
work in QP ha1 as a maia gl elaboration of such an ontology ([Hayes, 1979, Forbus, 19841
are examples). Eves today, a pod deal of QP research grapples with the development of

1 ontoloSies for difiernt parts of commoasense physical knowledge.
| 2. The cienfic o.no.&a is built on the commonsens ontology (and often gives specific

technical meanings to some of the terms in it, such as *force"). Additional concepts and
j terms are constructed. Some of these ma quite outside commons.... experience (examples

mare I"volta," "t current," &ad *chaum of quarks").
3. Compled cevW huawled. People compile causal expectations partly from direct

I experience and partly by caching some rsults from earlier problem solving. Which causal
expectations Set stored sad used is Largely determined by the relevance of the cue sad of-
fects to the goals of the problem solver. Thme is a mow orgsaaied form of causal knowledge

I1I5

that we build up as well: models of causal processes. By process model I mean a description
in terms of temporally evolving state transitions, where the state descriptions are couched
using the commonsense and scientific ontologies. For example, we have commonsense causal
processes such as "boiling." or specialized ones such as "voltage amplification." "the busi-
ness cycle," and so on. These are not neutral, agent-independent, process descriptions.
but ones in which the qualitative states that participate in the description have been cho-
sen based on abstractions of interest to the agent. In particular, such descriptions are
couched in terms of possible intervention options on the world to affect the causal process.
or observations to detect the process. Forbus' processes [Forbus, 1984] and my and my col-
leagues' work on functional representations (Sembugamoorthy and Chandrasekaran, 1988,
Keuneke. 1991. Goel, 1989, Sticklen and Tufanki, 19911 are examples concerned with the
development of representations for causal processes.

When the process model is based on premscientific or unscientific views, we have naive
process models (such as models of sun rotating around the earth, or of exorcism of evil
spirits). Many pre-scientific process models are not only quite adequate, but are actu-
ally simpler and more computationally efficient than the the scientific ones, for everyday
purposes.

These process descriptions are great organizing aids: they focus the direction of predic-
tion, help in the identification of structures to realize desired functions in design [Goel, 1989],
and suggest actions to enable or abort the process.

4. AMathematical equations embodying scientific laws and expressing relations between
state variables. These equations themselves are acausal, and any causal direction is given
by additional knowledge about which variables are exogeneous.

4 Some of the Things That A New QP Should Include

It is generally agreed, including by S&D, that a QP theory or framework should provide
support for three components of reasoning about the physical world: modeling, prediction
and control. In fact, a weakness of their paper is that they pay only lip service to the
problem of modeling and fail to show why or how dynamic analysis will help solve that and
the control problems. With the recent exception of SPQR. calcui, quite a bit of the work
in QP research is concerned with the development of ontologies, which are directly relevant
to the modeling problem. Since I expect other respondents to ontlme precisely how the
QP field is paying attention to thee problems, I will concentrate on those aspects of the
problem unlikely to be emphasized by them.

4.1 Modeling

All modeling is done in the context of goals to be accomplished, i.e., states to be achieved
or avoided in the world. The heart of the modeling problem is to map from goals to
tractable representations. Compiled causal kaowledge (see discussion in Section 3) plays
an essential role in identifying aspects of the physical dtuation and perspectives that need J
to be represented. The causal pronm modes can be usWed to Ildetify state that should
be represented and reasoned about. Gives a physical situation and 0oals, causal processe_

155

T

I
whose results are relevant to the achievement of the goals are retrieved and used as a

u guide in modeling the situation. The aggregation levels (when dealing with populations)
[Weld. 1986], the abstractions, the approximations and the concepts in the representation
are all jointly determined by the physical situation, the goals. and the rich storehouse
of causal process knowledge that expert reasoners possess. Progress in modeling requires
progress in ontology development and causal process descriptions.

4.2 Prediction

The power of experts in prediction comes, not from wholesale formalization of the problem
in terms of Physics and subsequent qualitative or other simulation (as much of current QP

I work tends to present the problem), but by the use of a substantial body of compiled causal
knowledge in the form of causal process descriptions to hypothesize states of potential inter-
est. Further, the state variables participating in causal relations may not all be continuous,
and hence, even in principle, not all problems of prediction can be formulated as analysis
of dynamical systems. For example, a substantial part of our causal knowledge is about
nominal variables ("vacations relax people," "lack of support causes objects to fall"). Simon
(Simon, 1991] describes a causal ordering scheme which works with such variables, but, as
a rule, the SPQR models and the dynamic system analysis techniques work only with state
variables which are continuous.

Humans, in their everyday life, rarely predict behavior in the physical world by gener-
ating a long series of causal chains, certainly not a series of inferences that can be called
"sound." The reasons for this are brought out clearly by QP work: ambiguities proliferate

r rapidly. If you ask someone what will happen if a ball is thrown at a wall, very little of the
sequence of predictions is the result of application of scientific laws of motion. Rather, a
short series of causal sequences are constructed from compiled causal knowledge, instanti-
ated to the specific physical situation. Two important sources of power that are available
for human experts in generating successor states and handling ambiguities are discussed
next.

I Compilation of consequences

If we ask someone, "what will happen if I throw a rock at the glass window?" that person
is likely to say, "the window might break." A number of such causal fagments, compiled
from experience or from earlier problem solving episodes, are stored as part of our causal
knowledge about domains of interest. The ambiguity ("might") is OK, since the goal of
qualitative prediction is typically not accuracy or certainty, but identification of an inter-
esting possibillty that may be investigated more thoroughly if needed.

I Handling ambiguity

Ambiguities in causal simulation are often handled not on the basis of what effect wil
I happen, but on the basis of what migh happen that may help or hurt the explicit or
1 background goals of the problem solver. Thus, when there Is more than one successor state

in simulation, the state that is related to goals of interest is chosen. In the xample involvian

156
!-~

the glass window, suppose a person was standing on the other side of the glass window, and
you saw some one about to throw a rock at the winddw. You would most likely attempt
either to stop the rock throwing or alert the person standing at the window. You would not
be paralyzed with the ambiguities in prediction: the rock may not really hit the window,
the window may not shatter, the rock may miss the person, the rock or glass fragments may
not draw blood, and so on. Not only the commonsense world, but engineering reasoning is
also full of such goal-driven ambiguity handling. For example, in design analysis, one might
use this form of ambiguity handling to identify the possibility that a component will make
its way into a dangerous state. Of course, once this possibility is identified, quantitative
or other normative methods can be used in a selective way to verify the hypothesis. This
heuristic role of qualitative behavior prediction is often ignored in QP research in favor of
concerns about completeness and soundness of predictions.

There is often no reason to make a complete and ambiguity-laden prediction of a physical
situation, if small and possibly retractable changes can be made to the physical world, and
changes directly noted. In fact, this is just another instance of using the real world as a
computational aid (Chapman, 1990], and avoiding long chains of reasoning based on complex
symbolic reasoning models.

In engineering and scientific reasoning, whenever reasoning about consequences reaches
a point where relatively precise answers are needed for choices to be made - and only then
- the situation can be seiectively modeled and analytical methods of varying degrees of
complexity and precision can be employed. The models that are formed reflect the problem
solving goal that is current, and typically represent only a small slice of the physical system.

4.3 Control

For control of reasoning (or the selection and deployment of reasoning methods, the so.
called problem of "intelligent control of methods"), we will need a theory of task analysis
for various tasks and domains. Such a task analysis will delineate alternative methods for
a problem, and the subtasks that each method generate. The properties and knowledge
requirements for each method could also be identified as part of such a task analysis, so
that choices of methods are done with due respect to the needs of goals and knowledge
availability. For example, a decision might be made about whether the current goal can be
met by using stored causal procem descriptions, by obtaining more accurate information
from the real world, or by performing calculations. An engineer might be able to use order-
of-magnitude reasoning in some camse to decide thmt safe levels of current will obtain in a
circuit. In othe case, predictive reasoning (with some type of ambiguity resolution) might
simply identify ssafe curm t level as a possibility. In the latter cae, a detailed formulation
of Kirchof's laws for the relekmt subsystem can be made and the equations solved. Thus,
an item in the rsearch agenda for any QP of the future wiln need to be the development of
task structures for various tasks Involved in QP. An example of such a task analysis is the
task structure for design is given in (Chandrasekaran, 19901.

15

157 ii

I
5 Summary

I The QP community represents many diverse goals. Even if one were not especially interested
in cognitive modeling and only cared about producing powerful technologies to help in
reasoning about physical devices. QP can exploit representations and techniques that form
part of human expertise.

The thrust of my discussion has been that if we are going to be doing a new QP, we
might as well expand its scope to include these different sources of power in expert reasoning.
While I agree with the points raised by S&D regarding the deficiencies of the current QP
calculi and also with their argument for the importance and power of qualitative analysis
of dynamical systems using advanced mathematical knowledge, the general problem of QP

is larger that that of reasoning about systems for which Physics models can be readily
made and which can be cast as dynamical systems of certain types. Many QP researchers
have recognized this and have been hard at work on developing the ontologies and process

I descriptions needed for the modeling task. However, much QP research in modeling and
reasoning is too concerned with step-by-step soundness at the expense of the heuristic
power of much human reasoning. It misses the role played by the "situatedness" of human

I reasoning about the physical world: the background goals and the rich store of causal
knowledge already possessed. It is not that one wants the results to be incorrect, but
soundness of human causal reasoning is the result of interesting and effective hypotheses
made in the first place, followed, if necessary, by a focused application of verification or
refinement techniques.

Finally, we need to expangl our consideration of media for representation and manipula-
I tion of concepts; for example, reasoning with pictorial representations for problems involving

shapes seems to be a natural direction of research.

Acknowledgements: I thank Rt. Bhaskar, Tom Bylander, John Josephson, Leo Joekowitz,
Dale Moberg, Hari Narayanan, Sunil Thadani, and Michael Weintraub for comments on my
first draft. I think they sort of agree, but I'm sure, not completely. Daniel Weld, as editor

I of the responses, made very helpful comments as well. I also acknowledge the support of
DARPA contract F-49620-89-C-0110 in the preparation of this artidcle.

References

[Chandraekara, 19W00 Chadrasekaan, B. (1990). Design problem solving: .A task anal-
ysis. Al Magaxne, 11(4):59-71.

I [Chapman, 1990] Chapman, D. (1990). Vision, instruction and action. Technical report,
MIT Al Lab, Cambridge, MA.

(Forbus, 19881 Forbus, K. (1988). Qualitative physics: Past, present and future. In Shrobe,
, I H., editor, Ex*ploring ArtijiciW Intelligence, pages 23-296. Morgan Kaufmann, San Ma-

teo, CA.

1
I

ij 158

if
-|-

[Forbus. 1984] Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence.
24:8.5-168.

[Goel, 19891 Goel, A. K. (1989). Integration of Case.Based Reasoning and Model.Based
Reasoning for Adaptive Design Problem Solving. PhD thesis, The Ohio State University.

[Hayes, 1979] Hayes, P. (1979). The naive physics manisfesto. In Mitchie, D., editor, Expert
Systems in the Micro-Electronic Age. Edinburgh University Press, Edinburgh.

[Iwasaki and Simon, 1986] Iwasaki, Y. and Simon, H. (1986). Causality in device behavior.
.4 rtificial Intelligence, 29:3-32.

(Keuneke, 1991] Keuneke, A. (1991). Device representation: The significance of functional I
knowledge. IEEE Expert, 6(2):22-25.

(Kuipers, 1986] Kuipers, B. J. (1986). Qualitative simulation. Artificial Intelligence,
29(3):289-338.

[Sembugamoorthy and Chandrasekaran, 1988] Sembugamoorthy, V. and Chandrasekaran,
B. (1988). Functional representation of devices and compilation of diagnostic problem-
solving systems. In Kolodner, J. and Reisbeck, C., editors, Experience, Memory, and
Reasoning, pages 47-73. Lawrence Erlbaum Associates. I

(Simon, 1991] Simon, H. A. (1991). Nonmonotonic reasoning and causation: Comment.
Cognitive Science, 15(2):293-300.

[Sticklen and Tufankji, 1991] Sticklen, J. and Tufankji, R. (1991). Utilizing a functional
approach for modeling biological systems. Advances in Mathematics and Computers in
Medicine (to appear).

(Weld, 1986] Weld, D. (1986). The Use of Aggregation in Causal Simulation. Artificial
Intelligence, 30(1). 1

15

I SPECIAL ISSUE:

I Architecture of intelligence: The problems and
current approaches to solutions

B. Chandrasekaran and Susan G. Josephson
Laboratory for At Research. The Ohio State University. Columbus. OH 43210. USA

We propose as a working hypothesis a Separability process is thought of as information processing. (We

9ypothesis which posits that one can factor off an will discuss this in more detail later in the paper.)
architecture for cognition from a more general architee- However, besides th e knowledge states, mental
lure for mind, thus avoiding a number of philosophical phenomena also include such things as emotional states
objections that hare been raised about the 'strong AI and subjective consciousness. Under what conditions
hypothesis. Using a coin-sorting machine as an example, can these other mental properties also be attributed to
we discuss a range of positio on representatiot and artifacts to which we attribute knowledge states? Is
argue that, for many purposes, the same body of matter intelligence separable from these other mental pheno-
can be interpreted as bearing different representational men?
formalisms. We then propose that one way to understand mea
thediversiy of archtecturalos thetoes is to mkerstan It is possible that intelligence can be explained orthe diversity of architectural theories is to makea

distinction between deliberative and suhdeliberative simulated without necessarily explaining or simulating
architectures. The search for oe architectural level other aspects of mind. A somewhat formal way of
which will explain al the interesting phenomena of putting this Separability Hypothesis is that the know-
cognition is likely to be futile. There are a number of ledge state transformation account can be factored off
levels that interact, and this interaction makes explana- as a homomorphism of the mental process account.
tie. in terum of one level quite incomplete. That is: If the mental process can be seen as a sequence

of transformations: M 1 -- M--M.... where M, is the
r Dimensions for thinking about thinking complete mental state, and the transformation function

(the function that is responsible for state changes) i; F,
then a subprocess K,--oK 2 - ... can be identified suchA major problem in the study of intelligence and that each K, is a knowledge state and a component of

Scognition is the range of-often implicit -assump- the corresponding M,, the transformation function is f,
tions about what phenomena these terms are meant to
cover. Are we just talking about cognition as having and f is some kind of homomorphism of F. A study of

intelligence alone can restrict itself to a characterizationand using knowledge, or are we also talking about of K's and A without producing accounts of M's and F.other mental states such as emotions and subjective If cognition is in fact separable in this sense, we can in
awareness? Are we talking about intelligen Ice as an principle design machines that implement f and whose
abstract set of capacities, or as a set of biological states taas KmsleWe canc shihnmm hs w usin e ptodieso states arc interpretable as K's. We can call suchphenomena? These two questions set up two dimensions machines cognitive agents, and attribute intelligence to

of discussion about intelligence. After we discuss these mc ainds they a ybe dnioa ed o ther ttrtes of to

dimensions we will discuss information processing, them if they achieve goals. However, the states of such
representation, andicognitive architeurea machines are not necessarily interpretable as complete

jf's, they may be denied other attributes of
mental states.

Dimension 1. Is intelligence separable from other For examplc, Searle' holds that a computer
mental phenomena? program that successfully translates from Chinese to

English cannot be said to "understand Chinese', even
When people think of intelligence and cognition, they though it is behaviorally intelligent in this task. In our
often think of an agent being in some knowledge state, terminology, we would attribute to the program various
that is, having thoughts, beliefs. They also think of the appropriate knowledge states. Searle's objection can be
underlying process of cognition as something that formulated as the claim that 'understandinlg is a
changes knowledlge states. Since knowledge states are Mubjective property that goes beyond merely being in
particular types of information states the underlying the corresponding knowledge state. and thus the

CURRENT SCIENCE. VOL 64. NO. 6..n MARCH t1q3

160

"•'qP * • • "• " " •!•*. '7•. '.;.""•""•. "77;"3.2 7 • L- -• --

ARTIFICIAL INTELLIGENCE

program can be denied that attribute, be characterized abstractly as a functional capability
However, other researchers claim that intelligence which just happens to be realized more or less well by

cannot be separated from other mental phenomena. some biological organisms? If it can, then study of
Such a claim is often made from two opposite biological brains or of human psychology is not

perspectives. Most people in artificial intelligence (AI) logically necessary for a theory of cognition and
and cognitive science say that intelligence and other intelligence, just as enquiries into the relevant capabilities
aspects of mind are inseparable because the other of biological organisms are not needed for the abstract

mental aspects (subjectivity, emotional states, etc.) are study of logic and arithmetic or for the theory of flight.

simply 'emergent' properties of certain kinds of complex Of course, we may learn something from biology about
agents with knowledge states. If this is the case, the how to practically implement intelligent systems, but we
knowledge state account, and with it an account in may feel quite free to substitute non-biological (both in
terms of information processing, will be a sufficient the sense of archituctures which are not brain-like and
basis for explaining and building minds. From this in the sense of not being constrained by considerations of
perspective, explanation of the phenomena of intelli- human psychology) approaches for all or part of our
gence and cognition will also turn out to be explana- implementation. Whether intelligence can be charact-
tion of the full range of mental phenomena. By the erized abstractly as a functional capability surely
same token. it is assumed that artificial agents that can depends upon what phenomena we want to include in
be plausibly interpreted as solving problems, achieving defining the functional capability, as we discussed. We
goals, and performing reasoning will also have might have different constraints on a definition that
emotional states and subjective consciousness attribu- needed to include emotion and subjective states from
table to them. one that only included knowledge states. Clearly, the

The second perspective from which intelligence is enterprise of Al deeply depends upon this functional
taken to be inseparable from other mental phenomena view being true at some level, but whether that level is
holds that there is no coherent way to factor off a abstract logical representations as in some branches of
knowledge state process account from a mental state Al, Darwinian neural pathway selections as proposed
process account. There is only one mental process. That by Edelman, something intermediate, or something
is, from this point of view, the categorical difference physicalist is still an open question.
between different attributes of mental states is affirmed, Newell holds a functional view of intelligence.
but the Separability Hypothesis is denied. We can talk According to Newell4 , intelligent agents can be
about knowledge components of mental states, but abstractly characterized by their goals, their knowledge
mental processes have no 'subprocesses' which only and the Principle of Rationality. That is, when we
have to do with information processing. In this view, attribute intelligence to an agent in some behavior, we
the only way to explain or build an intelligence is to are attributing to that agent a goal, a body of know-
solve the problem of explaining or building a mind. ledge, and a capability, at least in that instance of
Thus only agents which have the totality of what we behavior, of applying knowledge relevant to the goal to
call 'mind' will be able to perform as truly successful decide what to do. it is important to note that all of
problem solvers across the whole range of situations this is attribution. Newell calls a description of an agent
deemed to require intelligence, in these terms a Knowledge Level description. Know-

Edelmanl. 3 has argued that information processing is ledge Level descriptions view the agent as being in a
not the appropriate way to talk about cognition. knowledge state, and the Principle of Rationality as the
instead he proposes that the basic mechanisms of the abstract characterization of how the agent changes
brain are the selection of successful neural pathways in knowledge states. (Attributing knowledge and goals to
response to interactions with the world. The processes an agent is similar to taking an intentional stance
that underlie this neuronal path selection resemble towards agents that Dennetts has proposed.)
Darwinian evolutionary processes. Cognitive pheno- Ther is no claim that knowledge is internally
mena, in his view, cannot be separated and understood t explicitly, and in just the same propositional
in information processing terms, since cognitive states units as in the attribution, or that explicitly inferential
are simply aspects of more general brain states, and the processes are operating. Newell defines the functionality
basic brain mechanisms are not information pesses. of intelligence as the ability of an agent to realize the

knowledge potential inherent in its Knowledge Level
Dimension 2: Functional versus biological description. For Newell the important character of -

intelligence is the agent's ability to make full use of the f
The second dimension in discussions about intelligence knowledge attributed to it, not the amount or the
involves the extent to which we need to be tied to specifics of the agent's knowledge. Even humans are
biology for understading intelligence. Can intelligence only an approximation to the ideal intelligence so

CURRENT SCIENCE, VOL 64t NO. 6, 25 MARCH 199M

161

j SPECIAL ISSUE:

defined. In this perspective, biological evolution will be understand the common heritage between animals and
seen as operating in the direction of better and better humans, while traditional Al researchers stop their
approximation to this sort of intelligence through the biological commitment to characterizing intelligence as
evolution of more complex knowledge state representa- using knowledge to reason and achieve goals (since they

tions (of the sort that finds its culmination in human take humans to be doing that). Thus, all such proposals
language) which are capable of supporting open-ended pick out some interesting aspect from biological
deliberation and the application of knowledge to new phenomena. They then proceed to formulate a
goals. functional model that includes the selected aspect. After

So, with Newell, we have a functional characteriza- this, real biology is no longer logically necessary.
tion of intelligence which is independent of biology. But Whether any of these proposals would lead to the pro-
Newell goes on to propose an architecture which is duction (or explanation) of mentality in total, or almost
inspired by one biological instantiation, the human circularly, produce only those aspects of mentality that
cognitive apparatus. This architecture is similar to the are included in the functional definition, is obviously an
human one in that it has a long-term memory and a open question.
deliberative architecture similar to the one that in his
view characterizes human cognition. But, because it is a Coin.sorters and knowledge states
functional architecture, it goes beyond the biological in
many ways. For example, the ideal architecture always In this article we will take the Separability Hypothesis
retrieves the relevant knowledge, unlike the human as a working hypothesis. At this point. for all practical
version which often fails to remember. Further, the purposes Al (and cognitive science) can be considered
functional architecture is based on digital computer-like dhe study of those regularities of mind that have
symbol structures. For Newell, it does not matter if the information-processin explanations. We wilH assume

human brain is literally such a computer. All that that it is a worthwhile enterprise to concentrate on
matters is that the kind of computer-like symbol phenomena in which knowledge states of the agent
structures can support the functionality needed. Further, seem to play the central role. Further we will focus on
the architecture that is proposed by Newell as a processes that account only for generation and
possible one for Al is just one among many possible transformation of such knowledge states. Now this
realizations of the abstract functional capability speci- might appear to be a commitment to information
fled in his definition of intelligence, processing so strong that many interesting theories will

In general functional characterizations end up using be ruled out. However, we will argue that the
aspects from very different levels of descriptions of knowledge state account is very flexible, and can even
biological mind. For example, the connectionists want be applied to situations where there is no explicit
to be biological enough to include some of the smooth information processing in the conventional sense. To
concept learning done by humans, and an architecture illustrate this we will use the example of a coin-sorter
based on some abstract properties of what they take to for coins of USA.
be the information processing of brains, but their
orientation is not so biological as to demand wet Analysis of a coin-sorter
neurons and neuronal chemistry. Searle wants to be
iological enough to demand the inclusion of the Let us suppose that we have a black box coin sorter in

subjective awareness of being in a knowledge state front of us, and we want to describe its behavior
(which is how we interpret his claim that a translator computationally. All we see is that the coins are put
who follows the algorithm does not really 'understand into the top of the coin sorter, and then they come out
ChineseI that humans have, but he thinks that it is through one of four slots at the bottom, with all the
most likely the chemistry of the brain that is dimes coming out of the slot designated the dime slot,
responsible for it, and thus a pure information and the quarters coming out of the slot designated the
processing account will not succeed. Edelman wants to quarter slot, and so on. Let us assume we have four
be biological enough to include the way in which types of Al theorists: a logician, someone who is
organisms' brains, in his view, do not use pre-made committed to algorithms alone as the language in
internal labels (which he takes to be the characteristic which to formulate Al theories, a connectionist and a
property of information processing). Since his theory of physicalist. i.e. one who claims that the appropriate
pathway selection itself is stated as an abstract explanation of the coin-sorter should be in terms of its
mechanism, presumably artifacts could be constructed physics, not representations.
which implement that abstract architecture without any
further reference to biology. Connectionists (Rumelhart Loqic syvem coin sorter. The logician proposes that
cc at.") and Edelman want to be biological enough to the machine's behavior can be understood in terms of

CURRENT SCIENCE. VOL. 64. NO.6.25 MARCH 1993

162I1

ARTIFICIAL INTELLIGENCE I

four logical axioms, one for each coin. A set of actually implementing the theorem provers. The coin-

measurements is made on each of the coins, sorter might literally work by actuating an arm that

Perhaps diameter, weight and thickness are the coin's places the coins in the slots as soon as the results of the

important features for this purpose. Each coin type is theorem provers are available.

characterized by a logical formula of predicates

involving the measurements. For example, the axioms Decision tree coin-sorter. The second theorist observes
for each of the four types of coins will indicate what the coin-sorter and announces that its behavior can be
combination of weight, thickness and diameter chara- described by a decision tree. In a decision tree machine,
cterize that coin type. The logician claims that the there is an initial decision made between two groups,
behavior of the machine can then be characterized by a e.g. between the group consisting of the nickel and the
theorem-proving decision procedure that attempts to quarter, and the group consisting of the dime and the

prove each of the theorems for each coin that is penny. For each of the groups, at the next point in the
inserted, followed by a mechanism that places the coin tree, an additional decision is made to make a choice
into that slot corresponding to the theorem that was among subgroups, and this is repeated until each leaf
proved, node corresponds to one of the elements of the original

Note that this language enables us to argue about group. We now have a decision tree. In the coin-sorter

different theories about what is being measured by the example, we would only need two levels in the tree. The

sorter. Someone could watch the behavior of the coin criteria for the decisions at each node are given in the

sorter and assert that the machine is not using informa- form of rules involving values of measurements made

tion about the weight and diameter of the coins, but on the coin.
rather about, say, its color and metallic content. They Again, we can use the formalism as a descriptive
could propose an alternative axiom system in terms of device, or as a commitment to a certain internal
color and metallic content. Each such axiom system is a processing. For example, as a descriptive device, the
different content theory expressed in the logic forma- decision tree still enables us to propose different content
lism. theories, not only about what aspects of the coins are

Further, the formalism can be used to evaluate these measured as in the logic case, but also about what sets

alternate theories and test them experimentally. We can of decisions are made before what decisions. In this

use logical inference to draw out the consequences of sense, what was left as a feature of internal processing

each proposal. One hypothesized content theory might in the use of logic for external description, namely some
predict that a given foreign coin, say an Indian rupee, aspect of control strategy, is actually now made part of

will come out of the quarter slot, while another might the external description of the device. The axiom system
predict that the rupee will come out of the penny slot. made no commitment to controL This expresses the

We can then test to see which hypothesized content difference between a Knowledge Level account and a

theory most accurately describes the decision-making program level account. r

process within the black box by putting the rupee in On the other hand, similar to the logic case, one can ii
and seeing which slot it is placed at. imagine microprocessors actually implementing the

Notice that the usefulness of the logic formalism has decision tree algorithm, using the measurements to

two levels. On one level, we can use the formalism to make the choices in the tree, and activating the coin-

describe different content theories, e.g. the theory that placing mechanism appropriately when a leaf node is

the coins are being sorted by color versus one that they reached-
are being sorted by weight. We can use the inference

machinery that comes with logic to derive consequences Connectionist network coin-sorter. The connectionist
of different axioms and test one theory of representa- claims that what is really going on in the coin sorter
tional content against another. For this purpose, there involves the same features, diameter, color, or whatever,
is no need to commit oneself to how the insides of'the as the other theories assumed, but these evidences are
sorter work in any detail, except that information of 'weighted' and combined as in a connectionist network.

certain types is being used to make decisions of certain Different theories of representational content could still
types. We are simply using logic to reason about the be represented by identifying the nodes with different
agent, much as it is used in computer science to reason types of measurement. How the information is used can
about the correctness of a computer program written in be described by means of different weights and
some other language than logic. We are using logic to thresholds in the network. Intermediate abstractions

give a Knowledge Level description of the system. may be captured by hidden units. The intermediate
The second use of logic may be to model, or carry abstractions are combined with other intermediate

out, internal processing. For example, the coin-sorter abstractions and again weighted and higher level
might actually have dedicated Prolog chips inside decision units are constructed. A specific output node is 1
CURRENT SCIENCL. VOL 64, NO. 6.25 MARCH 1"93

163 1

SPECIAL ISSUE

identified for each coin. The 'energy' at the output processing account. While all three frameworks can be
nodes will be a function of how much evidence is used to describe information representation and
coming through for the coin for which it stands. The processing, they are not all equivalent. Connectionism
output node corresponding to the largest activation will enables one to talk about 'softer' combination of
be chosen as the decision node. information using real numbers, while logic enables us

Pretty much all the points we made about logic and to talk about variables and quantification, and the
decision trees can be repeated for this account as well. language of algorithms enables us to talk about control
The connectionist framework can be used to describe strategies. However, our main point here is that they
content theories about what information is used, and to can all be used as frameworks for describing informa-
give an account of what evidence is combined in what tion representation and processing, and also for
proportion with what other evidence. Inferences about implementing information processing, In Newell's
different content theories can be made and tested. At language, they can be used both as languages for the
this level, no commitment needs to be made that the Knowledge Level and for the Symbol Level.
inside of the sorter is literally a connectionist machine. The coin-sorter is a simple device, but it illustrates
On the other hand, the connectionist network can be the issues with respect to understanding biological
used as the internal information processor as well. brains. People take a whole range of stances on

whether the brain is actually doing information
Voila: Levers and holes! Let us now open the coin- processing on representations. Strong materialists argue
sorter and look at its inside. We see that as you put a that representationalist accounts of such systems areI coin in, it passes through levers and holes, all cleverly wrong, and the only scientifically acceptable causal
arranged such that the coin makes its way to the right story is at the level of the matter that composes the
slots. Clearly, the different weights and the sizes of the brain. Edelman is also against the information
coin have different effects on the levers and the holes, processing account, but his counter-proposal is in terms
There are no prologue chips or microprocessors or of an abstract pathway selection account, which is still
connectionist networks inside the black box, just an abstract functional architecture (i.e. no appeal to
mechanical parts. The physicalist, the one who does not physical laws is made), though not an information
believe in representations, smiles. processing one. Among those who agree that there is a

causal story to be told at the level of representations.
Does the sorter have a knowledge state interpretation? there are many divisions, but broadly, we can

distinguish between connectionist style representations
In response to the question, 'How did the quarter end and discrete symbol structure representations. The
up in the slot named "quarter"?', two kinds of answers, moral of our analysis of the coin-sorter is that forI both correct, can be given. In one, the answer would be explaining behavior which itself is couched in informa-
physicalist: an account of the coin's movement through tional terms, the information processing account is
the inside of the sorter following the physical laws. In useful as a stance to describe the biological brain.
the other, the answer would be in terms of how the Much of the argument in the field is a result of a
levers and holes 'use' information about the diameter confusion between two senses of being an information
and the weight and how the sorter 'decides' about the processor using representations. In one sense, when we
coin's direction of movemenL Clearly, whoever designed it ask whether the brain processes information we are
designed the sorter in such a way that there is a close really asking whether it is appropriate to ascribe
mapping between the information story and the informational activity to the brain and in the other
physical story. Because of this mapping, one can talk sense we are literally describing what the brain or
about the sorter being in various knowledge states. Of device actually does. Ascribing information processing
course, if the sorter that works by levers and holes has is to take an information processing stance. For
a consistent interpretation in terms of knowledge states, example we might ascribe information processing
then certainly any sorter that actually had a chip activity to the visual system on the pounds that it
proving theorems or implementing the decision tree produces information about the world. This is the sense
algorithm or the connectionist network will also have a of information-processing we are using when we stand
similar interpretation. That is. the knowledge state and outside the brain and look at behavior and ascribe an
information processing talk is applicable to all devices information-processing structure to the behavior that
whose behavior has a decision-making interpretation, we see. When we look at a black box coin sorter as a
irrespective of how they actually work. decision maker and work out a model of its

We can see that the logic account, the decision tree input/output behavior, we are ascribing informationalgorithm account and the connectionist account are all processing to it.
alternative languages in which to couch the information However, taking an informational stance whereby we

CURRENT SCIENCE. VOL 6. NO. 6. 25 MARCH 1993

164

K . . .~~~ - .. b... ,I _

ARTIFICIAL INTELLIGENCE 1

ascribe information processing to a device (or brain) issues. But first, we need to review the notion of an
does not commit us to that device literally processing architecture and make soule additional distinctions.
information, or using represetations, in the specific
medium in which the description is made. There is a

fact of the matter about whether the information Form and content issues in architectures
processing is being done in one medium or another. At in computer science, a programming language corres-
some point the behavior of the sorter which employs a ponds to a virtual architecture. A specific program in
Prolog theorem prover will be different from that based that language describes a particular (virtual) machine,
on levers and holes. When the latter sorter =I-al which then responds to various inputs in ways defined
functions, the explanation may be given in terms of by the program. The architecture is thus what Newell
physical properties, such as a lever being jammed, while calls the fixed structure of the information processor
in the case of the former type of sorter, the explanation that is being analysed, and the program specifies a
might be in terms of an error in the program in the chip vaaiaie strcture within this architecture. We can

or some hardware failure in the chip. (And in the case regard the architecture as the form and the program as
of the brain, in addition to the problem of failure the owed, which toether fully instantiate a particularmodes, there are other issues where the medium informaiton-procesm g machine. We can extend these
becomes relevant: properties related to learning, are one intuitions to types of machines which are different from
example.) But for most purposes where people think computers. For example, the connectionist architecture
that the issue is the medium of representation, the issue can be abstractly specified as the set ((NJ, (o), (no)often turns out to be one that can be formulated at the can b e at l s a set of N), inj and)Knowkl edge L (),} (w,1)}} where (N) is a set of nodes, fn1 } and {no}

Wn e rtainLevely a smarc subsets of (NJ called input and output nodes
We can certainly ask similar questions about the respectively, fC4 are the functions computed by thebrain. It is a matter of fact whether the brain is an nodes, and (wu1) is the set of weights between nodes. A

information processor of the 'physicalist' type, one of particular connectionist machine is then instantiated by
the connectionist variety, or one that has Turing the program" that specifies values for all these
machine-like symbols. (Putnam7 has argued that even variamles.

whether a piece of matter is a Turing machine is just a We have made a distinction between an architecture,

stance, but we think that the consensus is that Whe form in which the architecture will accept ontent,

Putnam's argument does not really work, and that not (the programming language form) and the content of
all pieces of matter can be interpreted as a given Turing the representation itsela When we explain specific types
machine.) But as long as we are interested in aspects of of cognitive pheenomena, we will end by oming up withy
the organism's behavior that have an informational a complex budget of credit allocation: some aspects will
flavor (such as decision-making) talk of informa- b eopled bygt of the arhecture

tion and its use is necessary in the analysis, just as it be explained by the properties of the architecture
was in the case of the coin-sorter. Much of the criticism (Prasom tingpemnadalo oe

wasfi the informaseon prof esoingsortew(fr. uof Ehelmac, e aspects of learning), some will be explained by the sortof the information processing view (from Edelman, e.g.) of information that is involved in the content. Credit
what the information-processing talk commits one to. allocation in this manner is a tricky analytic task.

We also need to make an additional distinction
Conversely, many proponents of information processing between micro- and macro-architectures, a distinction
explanations are also committed to such a narrow view, that is especially useful for cognition. A bank of
making far more commitments about internal processes information processors of identical type connected in

In the ra t of the article, we will adopt this broad some way has a macro-architectural description inInsthe restof inforathe artle, g we kowl edo e sth ade terms of the modules and their connections, while thesense of information processing or knowledge state entire system has a uniform micro-architectural descrip-
account as a stance that is useful in describing agents to 1tirnwhich we ascribe cognitive capadtieL tion,

whic weascibe ogntiv capcites.Many Al and cognitive science theories are really
theories about the content of knowledge, or types of
knowledge, needed for some task of interest, with

rsfore g minimal commitment to the architecture. Many debates
in the field, which are stensibly about the architecture,We now move to a discussion of architectural proposals turn out to be about the types of knowledge. For

within the information processing perspective. Our goal example, Drcyus talks about 'What computers. cannotis to try to place the multiplicity of proposals into do'. it turns out that he is pp to the idea that
perspective. As we review various proposals, we winl inteiligece can come out of a system that has a
present some judlements of our own about relevant knowledge base which explicitly and exhaustively
CURRENT SCIENCE, VOL 64, NO. 6.25 MARCH 1993

165

I SPECIAL ISSUE:

represents world facts and relationships in some logical human consciousness, specifically about what people
form. However, there are people within computational perceived to be the relationships among conscious
At who have been making this point as well. For thoughts. We are aware of having thoughts which often
example. Schank' has argued that our knowledge is not follow one after another. These thoughts are mostly
in the above form of abstract facts at all. but rather in couched in the medium of natural language, but
the form of experiences indexed and abstracted in sometimes thoughts include mental images as welL
various ways. Thus the issue, at least based on Dreyfus' When people are thinking for a purpose, say for
arguments. is not what computers cannot do, but what problem solving, there is a sense of directing thoughts,
certain kinds of knowledge representations cannot do. choosing some, rejecting others, and focusing them
It may turn out that the kind of information that towards the goal. Activity of this type has been called
Dreyfus sees as necessary cannot be represented in 'deliberation'. Deliberation, for humans, is a coherent
computers either, but he does not make the arguments goal-directed activity, lasting over several seconds or
for this position. longer. For many people thinking is the act of

We are now ready to give an overview of the issues in deliberating in this sense. Activities in this time span
cognitive architectures. We will assume that the reader should be contrasted with other cognitive phenomena,
is already familiar in some general way with the which, in humans, take under a few hundred -

proposals that we are discussing. Our goal is to place milliseconds: real-time natural language understanding
these ideas in perspective, and generation, visual perception, being reminded of

things, and so on.
Different kinds of theories about the architecture ofIntelligence as just computation the cognitive machine have been proposed depending

i rupon what kinds of patterns among these thoughts the
Until recently the dominant paradigm for thinking researchers have been struck by. Two groups ofabout information processing has been the Turing proposals about such patterns have been influential in

computer framework, or what has been called the Al theory-making: the reasoning view and the goal-T discrete symbol system approach. Information processing mioi vie.

theories are formulated as algorithms operating on data
structures. In fact At was launched as a field when

i Turing proposed in a famous paper that thinking was Deliberation as reasoning. People have for a long time
computation (the term 'artificial intelligence' itself was been struck by logical relations between thoughts and
coined later. A natural question in this framework have made the distinction between rational and
would be whether the set of computations that underlie irrational thoughts. Remember that Bool's book onthnigis asubset of Tuigcmual ucin, logic was titled 'Laws of Thought'. Thoughts often have

and if so. how the properties of this subset should be a logical relation between them: we think thoughts A
characterized, and B, then thought C, where C follows from A and B.

i Because of the technological nature of much of At, In Al. this view has given rise to an idealization of
only a small number of researchers have been intelligence as rational thought, and consequently to
concerned with intelligence in general Most of the the view that the appropriate architecture is one whose
work consists of algorithms for specific problems that behavior is governed by rules of logic. In Al, McCarthy
seem to require intelligence and that are practically is most closely identified with the logic approach to
important. Algorithms for diagnosis, design, planning. Al, and ref. 10 is considered a clear early statement of

etc. are proposed, because these tasks are seen as some of the issues in the use of logic for building an
I important for an intelligent agent But as a rule no intelligent machine. Researchers in Al disagree about

effort is made to relate the algorithm for the specific how to make machines which display this kind of
task to a general architecture for intelligence. While rationality. One group proposes that the ideal thought

f such algorithms are useful as technologies and to make machine is a logic machine, one whose architecture has
the point that several tasks that appear to require logical rules of inference as its primitive operators.
intelligence can be done by certain classes of machines. These operators work on a storehouse of knowledge
they do not give much insight into intelligence in represented in a logical formalism and generate
gen[l. additional thoughts. For example, the Japaese Fifth

generation project came up with computer architectures
whose performance was measured in (miions of)

I Archiacuawes fo, defiberatlon Inertmce per second The other group believes that the
architecture itself (i.e. the mechanism that generates

Histouically most of the intuitions in Al about thoughts) is not a logic machiM but one whichiinwiign have come frMM introspections about poerats plausile but not negmsary m •thoughts

CURRENT SCIENCE. VOL 64, NO. . 25 MARCH 1"3

1 166

ARTIFICIAL INTELLIGENCE

and then knowledge of correct logical patterns is used a set of alternatives to explore (the problem space),

to make sure that the conclusion is appropriate, explores it, sets up subgoals. etc.
Historically rationality was characterized by the rules The most recent version of an architecture for

of deduction, but in Al, the notion is being broadened deliberation in the goal-subgoal framework is Soar'.
to include a host of non-deductive rules under the Soar has two important attributes. The first is that any
broad umbrella of 'non-monotonic logic" or 'default difficulty it has in solving any subgoal simply results in
reasoning', to capture various plausible reasoning rules. the setting up of another subgoal, and knowledge from
There is considerable differen of opinion about whether long term memory is brought to bear in its solution. It
such rules exist in a domain-independent way as in the might be remembered that Newelis definition of
case of deduction, and how large a set of rules would be intelligence is the ability to realize the knowledge level
required to capture all plausible reasoning behaviors. If potential of an agent. Deliberation and goal subgoaling
the number of rules is very large, or if they are context- are intended to capture that capability: any piece of
dependent in complicated ways. then logic architectures knowledge in long term memory is available, if it is
would become less practical relevant, for any goal. Repeated subgoaling will bring

At any point in the operation of the architecture, that knowledge to deliberation. The second attribute of
many inference rules might be applied to a situation Soar is that it 'caches' its successes in problem solving
and many inferences drawn. This brings up the control in its long term memory. The next time there is a
issue in logic architectures, i.e. decision about which similar goal, that cached knowledge can be directly
inference rule should be applied when. Logic itself used, instead of searching again in the corresponding
provides no theory of control. The application of the problem space.
rule is guaranteed, in the logic framework, to produce a This kind of deliberative architecture confers on the
correct thought, but whether it is relevant to the goal is agent the potential for rationality in two ways. With the
decided by considerations external to logic. Control right kind of knowledge, each goal results in plausible
tends to be task-specific, i.e. different types of tasks call and relevant subgoals being setup. Second, 'logical
for different strategies. These strategies have to be rules' can be used to verify that the proposed solution
explicitly programmed in the logic framework as to subgoals is indeed correct. But such rules of logic are
additional knowledge. used as pieces of knowledge rather than as operators of

the architecture itself. Because of this, the verification
Deliberation as goal-subgoaling. An alternate view of rules can be context- and domain-dependent.
deliberation is inspired by another perceived relation Another point to note is that one of the results of this
between thoughts and provides a bas~c mechanism for form of deliberation is the construction of special
control as part of the architecture. Thoughts are often purpose algorithms or methods for specific problems.
linked by means of a goaI-subgyrd relation. For These algorithms can be placed in an external computa-
example, you may have a thought about wanting to go tional medium and as soon as a subgoal arises that
to New Delhi. then you find yourself having thoughts such a method or algorithm can solve, the external
about taking trains and airplanes, and about which is medium can solve it and return the results. For
better, then you might think of making reservations and example, during design an engineer might set up the
so on. Newell and Simon12 have argued that this subgoal of computing the maximum stress in a truss.
relation between thoughts, the fact that goal thoughts and invoke a finite element method running on a
spawn subgoal thoughts recursively until the subgoals computer. The deliberative engine can thus create and
are solved and eventually the goals are solved, is the invoke computational algorithms. The goal-subgoaling
essence of intelligence as a mechanism. More than one architecture provides a natural way to integrate
subgoal may be spawned, and so backtracking from external algorithms.
subgoals that did not work out is generally necessary. In the Soar view, long term memory is just anDeliberation thus looks like search in a problem space. associative memory. It has the capability to 'recognize" 1Setting up the alternatives and exploring them is made a situation and retrieve the relevant pieces of know-
possible by the knowledge that the agent has In the ledge. Because of the learning capability of the archi-
travel example above, the agent had to have knowledge tecture, each episode of problem solving gives rise to
about different possible ways to get to New Delhi, and continuous imptrovement As a problem comes along.
knowledge about how to make a choice between some subtasks are solved by external computational
alternatives. A long term memory is generally proposed architectures which implement special purpose algo-
which holds the knowledge and from which knowledge rithrsi while others are directly solved by compiled
relevant to a goal is brought to play during knowledge in memory, while yet others are solved by
deliberation. This analysis suggest an architecture for additional deliberatiou. This cyce makes the overall 1
deliberation which retrieves relevant knowledge, sets up system increasingly more powerful. Eventually, most I
CURRENT SCENCE, VOL 64. NO.6.25 MARCH 1993

167

SPECIAL ISSUE

routine problems. including real-time understanding is the problem space search engine that has been
and generation of natural language, are solved by proposed for the deliberative architecture such anIrecognition. (Recent work by Patten et al.13 on the use evanescent machine? One argument against it is that it
of compiled knowledge in natural language under- is not intended for a narrow goal like multiplication.
standing is compatible with this view.) but for all kinds of goals. Thus it is not fleeting. butIDeliberation seems to be a source of great power in always operational.
humans. Why is not recognition enough? As Newell Or is it? If the sole purpose of the cognitive
points out. the particular advantage of deliberation is architecture is goal achievement (or 'problem solving').
distal access to and combination of knowledge at run- then it is reasonable to assume that the architecture
time in a goal-specific way. In the deliberative machine, would be hard-wired for this purpose. What, however, if
temporary connections are created between pieces of goal achievement is only one of the functions of the
knowledge that are not hard-coded, and that gives it cognitive architecture, common though it might be? AtIthe ability to realize the knowledge level potential least in humans, the same architecture is used to
more. A recognition architecture uses knowledge less daydreaim. just take in the external world and enjoy it.
effectively: if the connections are not there as part of the and so on. The search behavior that we need forfmemory element that controls recognition, a piece of problem solving can come about simply by virtue of the
knowledge. though potentially relevant, will not be knowledge that is madle available to the agent's
utilized in the satisfaction of a goal. deliberation from long term memory. This knowledge is

As an architecture for deliberation, the goal-subgoal either a solution to the problem. or a set of alternativesIiview seems to us closer to the mark than the reasoning to consider. The agent, faced with the goal and a set of
View. AS we have argued elsewhere"', logic seems more alternatives, simply considers the alternatives in turn.

jappropriate for justification of conclusions and as the and when additional subgoals are set. repeats the
framework for the semantics of representations than for process of seeking more knowledge. In fact, this kind of
the generative architecture. search behavior happens not only with individuals, but

Al theories of deliberation give central importance to with organizations. They explore alternatives, but weIhuman-level problem solving and reasoning. Any do not see a need for a fixed search engine forcontinuity with higher animal cognition or brain explaining organizational behavior. Deliberation of
structure is at the level of the recognition architecture course hias to have the right sort of properties to be
of memory, about which this view says little other than able to support search. Certainly adequate working
that it is a recognition memory. For supporting memory needs to be there, and probably there are other
deliberation at the human level, long term memory constraints on deliberation, but it does not have to be
should be capable of storing and generating knowledge exclusively a search architecture. Just like the multipli-Iwith the full range of ontological distinctions that cation machine was an emergent architecture when thehuman language has. agent was ficed with that task, the search engine is the

corresponding emergent architecture for the agent facedIIs the search riew of deliberation too narrow?. A with a goal and equipped with knowledge about what
criticism of this picture of deliberation as a search alternatives to consider. In fact. a number of other such
architecture is that it is based on a somewhat narrow emergent architectures built on top of the deliberative

view of the function of cognition. It is worth reviewing architecture have been studied earlier in our work on
this argument briefly. Generic Task architectures"s. These architectures were

Suppose a Martian watches a human in the act of intended to capture the needs for specific classes of
multiplying numbers. The human. during this task, is goals (such as classification).
emulating some multiplication algorithm, i.e. appears to The above argument is not to deemphasize the
be a multiplication machine. The Martian might well importance of problem space search for goal achieve-
return to his superiors and report that the human ment. but to resist the identification of the architecure
cognitive architecture is a multiplication machine, but of the conscious processr with one exclusively
we know that the multiplication architecture is a intended for search. The problem space architecture is
fleeting, evanescent virtual architecture that emerged as still important as the virtual architecture for gVal-
an interaction between the goal (multiplication) and the achieving, since it is a common. though not the only,
procedural knowledge of the human. With a different function of cognition.
goal, the human might behave like a different machine. Of course, that cognition goes beyond just goal
It would be awkward to imagine cognition to be a achievement is a statement about human cognition. ifI-collection of different architectures for each such task; we take a design perspective and seek to specify'an
in fact. Cognition is very plastic and is able to simulate architecture for a function called intelliglence which
various virtual machines as needed. itself is defined in terms of goal achievement, then[CURRENT SCIEN4CE VOL 64. NO. 6. 23 MARCH 1993

168

ARTIFICIAL INTELLIGENCE

clearly we are free to design an architecture best suited when it is taken to be an information processing archi-
for that purpose. A deliberative search architecture tecture, whether it is a symbolic one or some other type.]
working with a long term memory of knowledge With respect to the kind of tasks the architecture
certainly has many attractive properties for this performs, we already mentioned Newell's view that it is
purpose as we have discussed in this section. just a recognition architecture. Any smartness it

possesses is a result of good abstractions and good
Architectures below deliberation indexing, but architecturally, there is nothing particularly

complicated. In fact, the good abstractions and
We made a distinction between cognitive phenomena indexing themselves were the result of the discoveries of
that occur in under a few hundred milliseconds and deliberation during problem state search. Being smarter.
those that evolve over longer time spans, and covered from the Newell perspective, is done by converting
the latter under deliberation. We will call the more and more deliberative problems into stored
architecture that handles the former phenomena recognition patterns through chunking. The real
subdeliberative. In deliberation, we have access to a solution to the problem of memory, for Newell. is to get
number of intermediate states in problem solving. After chunking done right: the proper level of abstraction.
you finished planning the New Delhi trip, I can ask you labeling and indexing is all done at the time of
what alternatives you considered, why you rejected chunking. Theories of memory representation (such as
taking the train, and so on. and your answers to them Schank's) are in this sense content theories of indices
will generally be reliable. You were probably aware of and labels, not architectural theories. Such content
rejecting the train option because you calculated that it theories of memory are not really in conflict with the
would take too long. On the other hand. we have Newell theory of deliberative architecture, since the
generally no clue about how the subdeliberative latter merely gives a way for the content to come to be
architecture came to any conclusion. If you recognize the way it is.
someone after not having seen him for twenty years, In contrast to the recognition view are proposals that
and that person expresses surprise by asking. 'I have see relatively complex problem solving activities going
changed a lot in twenty years. How did you recognize on in subdeliberative cognition. Minsky"0 originally
meT, you may come up with something like, 'I bet it is proposed a specific architecture for memory based on
your nose!', but you cannot be sure. You have no access frames, which are organized as a network of concepts.
to how your perception system actually recognized that each of which contained prototypical information
person. Similarly. you may have your own theory of about the concept. Relatively complex procedures were
why you were reminded of something, but you have no embedded in these concepts. More recently, he has
special access to what went on during that reminding, outlined a Society of Mind"' architecture for cognition.Freud's model of mind had complicated unconscious Cognition in this picture is a communicating collection

processes working, and in fact, in this view, conscious- of modular'agents, each of whom is simple. but capable
ness was often misled about the real content of these of some degree of problem solving. For example. theyunconscious processes, can use the means-ends heuristic (the goal-subgoaling)

Many people in Al and cognitive science feel that the feature of deliberation in the Soar architecture).
emphasis on complex problem solving as the door to Deliberation has a serial character to it. Almost all
understanding intelligence is misplaced, and that proposals for the subdeliberative architecture. however.
theories that emphasize rational problem solving only use parallelism in one way or another. Parallelism can
account for very special cases and do not account for bring a number of advantages. For problems involving
the general cognitive skills that are present in ordinary similar kinds of information processing over somewhatpeople. This group of researchers focus almost distributed data (like perception, parallelism can speed I
completely on the nature of the subdeliberative up processing. Some problems that require explicit
architecture. There is also a belief that the subdelibera- search if done serially can be done without search in ative architecture is directly reflected in the structure of parallel architecture. For example. perception problems
the neural machinery in the brain. Thus, some of the often involve evaluating a number of alternative
proposals for the subdeliberative architecture claim to interpretations and choosing the best. These alterna-
be inspired by the structure of the brain and claim a tives can be simultaneously assessed in parallel and the
biological basis in that sense. best picked. Ultimately, however, additional problem

solving in deliberation may be required for some tasks.
Alternative proposals. The various proposals differ Within the school that views the subdeliberativealong a number of dimemsions: what kinds of tasks the architecture as representation.processing, there has
architecture performs, degrme of piralleism, whether it been a debate about the medium in which information
is an information processing architecture at all, and is represented. Turing computational architectures have

CURRENT SCIENCE. VOL 64. NO. & 2S MARCH 1"3

169

1 . SPECIAL ISSUE

been the representational frameworks of choice for additional mechanisms by which these structuresI modeling deliberation. For subdeliberation, the same develop higher and higher order categorizations and
framework was used until connectionism came along. coordinations.
Connectionism replaced the explicit processing of The motivation behind connectionism and its

Ssymbolic tokens with a specific type of analog offshoots is generally couched as opposition to
computation. The original connectionist proposal of the symbolic computation, and Edelman argues against
PDP type' were in some ways less powerful than information processing, but, as we have argued earlier.
Turing machines. For example. it had to face the the real opposition seems :o be to the idea of a
criticism that that kind of computation cannot account representational repertoire that corresponds to the
for the systematicity and generativity of natural theories of the external world of objects and relations
language which requires variable binding and symbols that we conceptualize in our conscious models of the
of some type". requirements which the Turing- world. There is a widespread suspicion that A[and
computational framework can handle well. A number cognitive science have confused the externally visible
of ways of enlarging the connectionist frameworks to constructions of mind (explicit knowledge of the world.
give them these capabilities have been proposed. Some grammars, ctc.) as the raw material of mind. In this
involve using explicit symbols in connectionist repre- view. just because we seem to be using pieces of
sentations (see for example, ref. 19), while others involve knowledge in our deliberation does not mean that this
representations that have some of the properties of knowledge was represented in that form in memory.
symbols without being symbols in the Turing-computa- The phrase 'information processing' has been too
tional sense (see for example, ref. 20). In any case, most closely associated with the view that what is inside the
of these connectionist proposals are actually imple- mind is much like what we seem to have in our
mented and simulated in digital computers, and none of consciousness. The opposing view is that whatever is
the functions that they compute are outside the Turing inside us is not in the form of abstract statements of
framework. The problem does not really seem to be facts about the world, but rather is concretely tied to
with Turing computation per se, but rather the way in our interaction with the physical world, flexible, open-
which Turing computation has been used in A; and ended, and constantly changing with each interaction.
cognitive science, namely as applications of inference on With this proviso accepted, we can take a representa-
axiomatically represented world knowledge. tional stance towards connectionist networks as well as3 Connectionism has been evolving in a number of Edelman's selection machine. In that sense of attributedI directions. A proposal that has been gaining currency is information or knowledge that we argued for in our
that the information processing of the brain is a discussion of the coin-sorter. Edelman's organism has
dynamical system 2 ' defined by complex nonlinear knowledge and information. We can. from outside.
differential equations. It has been claimed, for example, watch an Edelmanian brain at some point in itsthat chaos may be useful as a creative device for new evolution, and say things like. 'This organism knows
states in a search22 , and that dynamic systems at about x. but not about y." In the broad sense of
criticality have the unbounded dependencies characteri- information processing that we have been advocating.
stic of context-sensitive grammars23. Edelman's organism is an information processing agent

Edelman argues strongly against information pro- and its neural pathways represent knowledge. If
cessing theories of cognition on the ground that they knowledge of the world can be in the form of on-goingrequire a prelabeled world of objects and relations, abstractions of experience, which at the Knowledgewhereas biological organisms in his view discover Level. can be interpreted as partial, but increasingly

patterns as regularities in their interactions with the world more veridical, knowledge of the world, then all these
rather than start with prelabeled information. He also approaches qualify as information processing theories.
argues against connectionism since he thinks they Is there a 'right' architectural theory of subdelibera-
require some form of prelabeled information as well. tion? Later in the article we discuss how to place the

SHis architectural proposal is not couched as computa- various alternative proposals in useful relations to each
tion on representations. but as one in which successful other.
neural pathways are selected in a process similar to So far we have talked about the micro-architecture of
Darwinian evolution. The selection is done in response the subdeliberative system. A few brief comments on

I to the physical interaction of the organism with the macro-architecture are relevant. Fodor-' has proposed
external world. This process results in neural structures the Mudularity Hypothesi.s which asserts that there are
which categorize the organism's interaction with the separate modules for each of the perceptual modalities.I world, but these are not fixed logical categories, but the language modality and central cognition. That is.
flexible, constantly changing ones, to reflect the there is relatively little interaction between them until

L organism's continuing interaction. Edelman has proposed the perceptual and language modules have completed

I CURRENT SCIENCE. VOL. 64. NO. 6.25 MARCH 1"93

1 170

ARTIFICIAL INTELLIGENCE

their interpretation tasks. These interpretations are processes, but accepts the fact deliberation does contain

available in the working memory of deliberation. There and use knowledge. Thus the Knowledge Level

is some debate about how much information flow is description could be useful to describe, the content of

there from one modality to another during recognition, agent's deliberation. But the perspective emphasizes the

but there is general consensus that the degree of issues relevant to the nature of the neural level

intermodality information flow is small in comparison descriptions and the processes which work with the

with the information processing within each module. external situation to construct the representations in

deliberation.

Situated cognition. Real cognitive agents are in contact The movement raises many important issues, but the

with the surrounding world containing physical objects solution to the problem of what sort of neural processes

and other agents. A new school has emerged calling exist and how the interactive process constructs

itself the situated cognition movement which argues that representation is still in the future.

traditional Al and cognitive science abstract the

cognitive agent too much away from the environment, Integrating the perspectives

and place excessive emphasis on internal representa-
tions. The traditional internal representation view leads, An integrated view of problem solving. We briefly

according to the situated cognition perspective, to outline how the major components of the cognitive

excessive amounts of internal representation and architecture work together in the solution of complex

complex reasoning using these representations. Real problems. The agent is embedded in the physical world.

agents simply use their sensory and motor systems to receives sensory information, and acts on the world.

explore the world and pick out the information needed, Deliberation is the central co-ordinating architecture,

and get by with much smaller amounts of internal and its working memory can contain both symbolic

representation processing. At the minimum, situated and imagistic data, constructed out of long term

cognition is a proposal against excessive 'intellection'. representations in response to the goal at hand, as the

In this sense. we can simply view this movement as situated cognition movement proposes. Memory can be

making different proposals about what and how much viewed at the Knowledge Level as containing this

needs to be represented internally. However, there are information, but this talk should not mislead one into

more radical versions of the movement in which any thinking that the information that is in working

internal representation is denied. Specifically, the memory was in that form in long term memory (see our

movement rejects the idea that knowledge is represented discussion on situated cognition). The agent also has
in the brain and retrieved as needed, but instead holds action repertoires which can be thought of as a form of

that knowledge is constructed by the agent in a memory, but information representational talk is much

complex interaction between neural processes and the less appropriate for describing them.
external situation. '[Representations] are the product of The degree of abstract problem solving required
interactions, not a fixed substrate from which behavior depends on the kind of goal. Many goals can be simply
is generated'2 5 . The reader will recognize that this view solved by means of one or more of the action

is close to that of Edelman. This constructivist view of repertoires, with little mediation from anything that
knowledge is a major dividing line between traditional one might call problem solving in the sense of
"knowledge representation' view in Al and the situated manipulation of representations of choices in a search

cognition view. To take an example, schema theories in space. The goal-action-sensory system triple is highly

psychology and frame theories in Al have held that evolved and integrated to carry out, in a goal-driven -

memory is organized in terms of schemas, stereotyped way, such action sequences.
concepts or events. The newer view would hold that When such action sequences are not immediately
such schemas are actually constructed in response to available for the goal, there are a number of options.

the situation. not units of memory representation and Working memory may contain abstract representations
organization". of problem space alternatives. The problem space and

In our discussions so far, we have presented two the operators available may have not only abstract
different views on internal representations. On the one symbolic components, but imagistic components as

hand. we have representations in the traditional Al well. Working memory may also contain previously 1
sense of explicit encoding of facts and so on, and on the developed sequences of solutions or pointers to external
other hand, we also said that one can often take an methods, algosthms. or models. Some of the subgoals I
external Knowledge Level stance towards the content are best accomplished by action sequences, some by

of knowledge that is implied by an agent's behavior. operators that are specific to the image modality (e.g.
The situated cognition perspective clearly rejects the reasoning with mental imateslw some by application of

former view with respect to internal (sub-deliberative) abstract knowledge operators, and some by invoking

CURRENT SCIENCE. VOL 64. NO.6,25 MARCH 1993

171

SPECIAL ISSUE

external agents and models. Many of the subgoals can contending proposals for the subdeliberative architec-
be accomplished just by interacting with the world or lure. and no doubt there will be many others over time.
sensing the world rather than by reasoning on complex But to look for a 'correct' answer to the cognitive
representations. A common way of avoiding complex architecture may be to commit an error in reification, in
reasoning is to leave representational markers in the believing that there exists one architecture that can be
physical world, and use action and sensory operators to factored off the physical brain in such a way that the
"read ofr the information, architecture corresponds to and only to cognition (or

The above description emphasizes how much of real more generally mentality). In the introductory section
problem solving is dominated by the fact that the agent on dimensions for thinking about thinking, we
is situated in the world. and how artificial a pure discussed the problems associated with factoring off a
symbolic representation manipulation view can be for cognitive architecture from a mental architecture. A
many problems. At the same time, the above picture is similar issue arises in the belief that a mental
admittedly schematic. A number of important issues architecture can be factored off the physical brain or
remain unsolved. We already referred to the problem of the body, and that a clearly defined set of functionalities
the mechanisms by which knowledge in working can be identified to define mind. What we have in the
memory is constructed in response to goals. How the brain is a biologically evolved complex piece of matter
sensor-action system is integrated with deliberation in working at many levels, informational, chemical and
an abstract sense requires many details to be worked electrical. Certainly different stances can be taken
out. but it sets a research agenda that is different from towards it for different analytical purposes. but
that of traditional Al. believing that there exists a separable architecture

called the mental, especially one that has a description
Conieat-driren .41 and microstructural accounts are both at one level, may be Platonism run amok.
needed. In a strange way. the perspective we just If this view is right, then we can see the contending
outlined validates both traditional Al and the new proposals for the subdeliberative architecture as
emphasis on microstructure. Traditional Al. with its approximate descriptions, at somewhat different levels.
emphasis on knowledge and the distinctions needed to of a physical reality called brain, which in turn is the
express it. has tried to wrestle content down. It has basis for a host of behaviors that have a mentalistic
been able to do this pretty well up to a point, but description.
because it is not embedded in a theory with appropriate Consider the mathematical description of an econom.
microstructure and environmental interaction, ends up in a human society. It would be strange to regard the
orer-idealizing content and missing the form in which economy as the reality which just happens to be
knowledge really emerges. The microstructural accounts implemented on humans. Description of an economic
have potential to explain the genesis and evolution of model is an approximate description of certain types of
knowledge, and. to the extent that they base themselves activities in -human society. This is the analogy that we
on some aspects of biological neural systems. can would like the reader to keep in mind as we describe
explain aspects of continuity in cognition between our view of hierarchy of cognitive architecture
higher animals and humans. It is also often hoped that descriptions.
the content problem in Al can be solved by AI systems In this view, the Edelman selection machine is a
that learn from scratch or with little initial knowledge. convenient and approximate description of a machine
That is. the hope is that learning will obviate the need which is really a complex chemical machine. At a
to develop knowledge level distinctions. That seems higher level, dynamical systems provide another
highly unlikely for reasons of complexity, both in time approximate description, with connectionist descrip-
and in the environmental specification, but also due to tions providing yet another level of description. We
the need for specifying appropriate initial states. It is think that when the selection machine organizes itself
more likely that the learning theories will give broad to perform some task, say perception. it should be
insights about content that might place useful constraints possible to see in it a description of evidences being
on knowledge level theories. Thui the content-driven combined, the language in which connectionism works.
Al picture and the microstructurc-driven new archi- At the top level we have the knowledge level
tectural views need to work side by side for quite a description of the agent in terms of knowledge and
while. hoping to meet in various ways and places for goals. Each of these descriptions captures some aspects
mutual benefit. and functionalities. but misses others.

However, this picture of virtual machines all lined up
Hierarchy of leaky architectures and c'qlnitire explana- vertically, the deliberative architecture on top of the
tions. We have mentioned connectionism. dynamical recognition architecture on top of. say, a dynamical
systems, and Edelman's selection machine as three systems architecture which in turn is on top of

CURRENT SCIENCE. VOL. 64. NO. 6 5 MARCH 1993

172

ARTIFICIAL INTELLIGENCE

.omething else and so on all the way down to chemistry This is not to espouse a form of relativism, however.
and physics. might give a false picture of perfect Not everything counts. There are lots of machines that
implementations of a higher level by a lower leveL could not be brought up as virtual machines by the
Biological brains do not really have cleanly lined up brain. Interestingly, all the virtual machines that we

architectures in the way that computers do. In artifacts considered, from Soar to connectionist systems to [1
like computers, we as designers have conceptualized a Edelman's path selection machines, have a special

* pure information processing machine and have created feature: they all are oriented towards adaptation and
a complete one-to-one correspondence between the learning. Thus, there is a relationship between learna-
elements of that and the elements of a physical bility and being capable of being a virtual machine of
machine. Except when the machine malfunctions we interest. There are facts of the matter to be investigated
never have to worry about the lower level machine. In and discovered. We can ask of a proposed virtual
computer software design each level of architecture, machine, what work does it do? How is it useful as level
each virtual machine, sits cleanly upon the one beneath of explanation? We can also ask of a particular task
it without the one beneath it showing through at alL how is it being done? What sort of architecture is being
Each level is smooth and closed and separate with used to accomplish it? Although we can potentially
respect to other levels of the architecture. This sort of model each individual function of cognition, there may
architectural arrangement has guided much of our be no abstract platonic engine which accounts for all
thinking about human cognitive architecture. and only cognitive, or all and only mental, behavior.

However, in a biologically evolved object like the There may well be just various cognitive functions and
human brain such a clean separation between levels of various machines that can be used to explain those
architecture and between software and hardware is functions. 1
impossible. This is because, first of all, these archi-
tectures we have been describing are all 'leaky' virtual
machines. That is, when the surface structures are Concluding remarks
stressed, or under certain situations, the underlying
machine shows through. There are layers of representa- We started by asking how far intelligence or cognition
tional structures and representations from other layers can be separated from mental phenomena in general.
peak through at any given layer. Like in the case of We also suggested that the problem of an architecture
vision, where in certain optical illusions the physical for cognition is not really well-posed, since, depending
structure of rods and cones shows through the upon what aspects of the behavior of biological agents
interpretive architecture, the architecture of the under- are included in the functional specification, there can be
lying machines literally shows through in certain different constraints on the architecture. That is, it is
circumstances. The cognitive phenomena are thus not not clear that, from an architectural perspective, the
all going on at one level of architecture. Secondly, these idea of a .cognitive architecture is a natural kind.
layers of architectures are not complete, i.e. each level Nevertheless, we said, we can talk about cognition as a
of description does not fully account for all the coherent phenomenon of interest if we think of it as
phenomena of interest. Given some complex mental that behavior in which we ascribe knowledge states to
activity, explanation of some aspects can be given by the agent. Newells Knowledge Level view of an agent is il
the Knowledge Level, for some we will need to appeal based on a similar point of view about a cognitive
to the properties of the connectionist architecture, for agent.
some to the properties of the selection machine, and for We reviewed a number of issues and proposals
others we may simply need to appeal to chemistry and relevant to cognitive architectures. The computer [I
other physical properties. metaphor has had its day, but, we argued, the

What description we use to account for the information processing language has significant expla-
phenomena depends upon our goals. The cognitive natory powers left. We ended with the position that the U
phenomena we are looking at are not going to admit of search for an architectural level that will explain all the
any single level of explanation. They are very multi- interesting phenomena of cognition was likely to be fl
dimensional, and for some purposes we can account for futile. Not only are there many levels each explaining
the behavior by refrring to the deliberative machine, some aspect of cognition and mentality, but the levels
but for other purposes that will not do, and we will interact even in relatively simple cognitive phenomena.
have to account for the behavior by reference to a Ultimately even physics will account for some mental
lower klvel of the architecture. This means that the phenomena. II
information procasing architecturs that we see By treating mentality, not to speak of its cognitive
underlying human cognitive behavior are architectures component, as ultimately not fully separable from the
that we have abstracted for certain classes of purposes. physical substrate, we are not being pessimistic about

CURRENT SCIENCE. VOL 64. NO. 6.25 MARCH 1"93

SPECIAL ISSUE

the prospects for cognitive science and Al. just being 13. Patten. T. Geis. M. and Becker, B. Toward a theory Of

careful about what one might expect. In one sense, this compilation for naturlI language generation` Comill. Imeal. 1992-

view reinforces the arguments for the need for (L). 77-110.
14. Chandrasekaran. B_ Roles of logic in Artificial Inteligence.

grounding"', and being and growing as real humans. as Vivek: A Quarterly in Arrificial Intelligence. National Centre for

the ultimate requirement for achieving the kind of Software Technology, Bombay. 1991.4(2). 13-15.

mentality that we have. On the other hand, explana- 15. Chandrasekaran. B. Generic tasks in knowledge-based reasoning.

tions of all sorts of mental phenomena can come at high-level building blocks for expert system design. IEEE Expert.

1986k I M3). Fall, pp. 23-30.
various levels. We can build problem solvers, perceivers, 16. Minsky, M, A framework for representing knowledge. The

cognizers and so on, and depending upon their physics Psychology Of Computer Vision (ed. Winston, P. H.). McGraw

they may have their own version of mentality. There is Hill New York. 1975. pp. 211-280.

no need for Al or cognitive science to insist on the 17. Minsky. M.. The Society of Mind, Simon and Schuster, New

various Separability Hypotheses being true in all details York. 1986.
for getting nearer and nearer to the goals of l8. Fodor. J. A. and Pylyshyn, Z. W. Connectionism and cognitive

architecture: A critical analysis. Cogrition, 1988. 28. 3-71.

explanation and simulation of mind. 19. Shastri. L Connect onism and the computational effectiveness of

reasoning. Theor. Ling. 1990. 16(0), 65-87.
20. Pollack. J. B., Recursive distributed representations. Artif Inteil..

1990.46(1), 77-105.

I. Searle. J. R., Minds. brains and programs. Behav. Brain Sci.. 1980. 21. Pollack. J. B. Review of Unified Theories of Cognition. in Artif

3. 417-424. Intell., 1993. in press.

2. Edelman. G. M.. Neural Darwinism: The Theory of Neuronal 22. Skarda. C. A. and Freeman, W. J, How brains make chaos in

Group Selection. Basic Books, New York. 1987. order to make sense of the world. Behar. Brain Sci- 1987. 10.

3. Edelman. G. M.. The Remembered Present: .4 Biological Theory of 161-195.

Consciousness. Basic Books. New York. 1989. 23. Crutchfield, J. P. and Young. K. Computation at the onset of

4. Newell. A.. Unified Theories of Cognition. Harvard University chaos, in Computation. Entropy and the Physic5 of Information (ed.

Press. Cambridge. MA. 1990. Zurek. W.L, Addison-Wesley, Reading. MA. 1989.

5. Dennett. D.. The Intentional Stance. MIT PressiBradford Books. 24. Fodor. J. A. The Modularity of Mind: An Essay on Faculty

Cambridge. MA. 1987. Psychology. MIT Press/Bradford Ro"ks. Cambridge. MA. 1983.

6. Rumelhart. D. E.. McClelland, J. L and the PDP research group 25. Clancey, W. J. and Roschedle I., Situated cognition: How

leds.). Parallel Distribted Processing: Essays in the Microssrwture representations are created and given meaning. Technical report.

of Cognition. Foundations. MIT PressBradford Books. Cambridge. Institute for Research on Learning. Palo Alto, CA 94304, USA.

MA. 1986. 1991.

7. Putnam. H.. Representation and Reality. MIT Press/Bradford 26. Iran-Nejad. A, The schema: A long-term menm'ory structure or

Books. Cambridge. MA. 1988. transient functional pattern, in Understanding Readers' Under-

8. Dreyfus. H. What Computers Cannot Do: The Limits or Artificial standing: Theory and Practice (eds. Tierney, J. et aL4 1980.

Intelligence. Harper and Row.. New York. 1972. Lawrence Edbaum, Hillsdale- 1987.
9. Schank. R. C.. Dynamic Memory: .4 Theory of Rermnding and 27. Hamad. S_ Tne symbol grounding problem, Physica. 1990. 1)42.

Learning in Computers and People. Cambridge University Press. 335-3466.

New York. 1982.

10. McCarthy. J. and Hayes. P. J.. Some philosophical problems from ACKNOWLEDGEMENTS. B. Chandrasekaran's work in the

the standpoint of artificial intelligence. Machine Intell.. 1969. 6. preparation of this paper was supported by US Defense Advance

133-153. Research Projects Agency via contract F-49620,89-C-01 10. mona-

11. McCarthy, J.. Circumscription: A form of non-monotonic tored by Air Force Office of Scientific Research. We thank Tom

reasoning. ,4rif Intell.. 1980, 13. I-2.2 7-41. Bylander. John Josephson and Jordan Pollack for their comments on

12. Newell. A. and Simon. H. Human Problem Solving, Prentice-Hall, a draft of this paper, and Prof. Narasimhan for the invitation to write

Englewood Cliffs. NJ. 1972. this article.

CURRENT SCIENCE. VOL 64. NO. 6. 25 MARCH 199"

"174

I

I Chapter 4

I Perceptual Representation and Reasoning

I
B. Chandrasekaran and N. Hari Narayanan

I Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University, Columbus, Ohio 43210
email: chandra@cis.ohio-state.edu, narayan@cis.ohio-state.edu

Abstract

A common view of reasoning in cognitive science is that it is a process that operates
on abstract sentential representations. This view implies a separation of reason-
ing from sensory perception. Consequently, the study of perception has proceededj relatively independently of the study of various reasoning strategies that humans
employ. In this paper we argue that there are many commonsense situations in
which human reasoning is tightly coupled with perception, in particular with per-
ceptually represented experiential knowledge. This type of reasoning is referred to
as perceptual reasoning. We explain perceptual reasoning in terms of experientially
acquired perceptual inference rules, and briefly discuss how this relates to a previ-
ous proposal about representations that underlie visual perception and imagery [5].
Finally. the implications of this stance are discussed.

I
4.1 Introduction

Professor Yoh-Han Pao's research interests have spanned a wide variety of issues
in Artificial Intelligence. The subject of this paper, we think, reflects at least some of
the range of Prof. Pao's interests: pattern recognition, vision and problem solving.
We are pleased to discuss in this paper the close integration between perception and
problem solving that exists in people and make some proposals about how computers
can be designed which take advantage of diagrams and images in problem solving.

I Sensation, perception, cognition, and reasoning have all been subjects of study
by cognitive psychologists. How are these related? One answer, from an information

This paper is a revision of a talk presented at the AAAI Spring Symposium on Reasoning with
Diagrammatic Representations, Stanford University, Palo Alto, California, USA, Match 25-27, 1992.
An earlier version appears in the Working Notes of the symposium, pp. 24-29.

lfiefliget Systexm. Edited by LS. SterlingSPlenum Press. Now York. 1993
1]75

I
Chandrasekaran and Narayanan

processing perspective, is that reasoning operates on information about the world
around us. This information is made available to the cognitive system through the
processes of sensation, perception, and cognition. Are these four processes strictly
sequential, influencing each other in a unidirectional way? While it seems obvi-

ous that sensation must precede perception, it is not evident that cognition must
strictly follow perception or that reasoning must operate solely on post-cognitive
representations. The work of Biederman [4] on human object recognition, for ex-
ample, suggests that perception of a few shapes in an object can trigger recognition
which then can influence perception. Deliberative reasoning has been typically char-
acterized as operating on post-cognitive representations and therefore divorced from
acts of perception that produced them. However, the view that human reasoning
and behavior are tightly coupled with (situated in) perception is gaining increas-
ing credence. An excellent illustration of perceptually grounded reasoning is given
in Shrager's account of commonsense perception [19]. Another confounding phe-
nomenon in the visual modality has been that of mental imagery [20]. Any theory
of visual perception and cognition that postulates some underlying representations
and mechanisms has to account for this phenomenon.

Humans are adept at making plausible inferences in situations in which the rea-
soning employed typically involves perception, cognition, and imagination. Ideas
emerging from recent research (such as those cited above), namely, that perception
and cognition influence each other, that any theory of perceptual representations
and mechanisms should account for imagery also, and that reasoning is sometimes
tightly coupled with perception, are very relevant to analyzing cornmonsense rea-
soning in such situations. In this paper we take a careful look a' spý,c c= scenario
that involves reasoning about perceptual and imaginal events. T)L, * called per-
ceptual reasoning. It is argued that perceptual reasoning can be ciharacterized in
terms of experientially acquired perceptual inference rules. Then we briefly de-
scribe some properties of perceptual representation and architecture. It is suggested
that the specialized (to the visual modality) nature of perceptual architecture and
modality-specific operations on perceptual representations that it provides together
can account for mental imagery and internal visualizations during perceptual rea-
soning. What is outlined here are the beginnings of a theory of commonsense visual
reasoning based on the twin ideas of modality-specific representations and inference
rules with perceptual and conceptual content [6]. Finally, the implications of our
stance are discussed.

4.2 Perceptual Reasoning

4.2.1 A Scenario

Consider the following situation. You are seated with others around a table and
you notice that someone sitting beside you is about to throw a rock. You then
notice that the rock, if thrown, will hit a glass-paned window outside which a child
is playing. Your immediate reaction will be to restrain the potential rock thrower,
in order to prevent the child from being hurt.

176

-

Chapter 4. Perceptual Representation and Reasoning

1 4.2.2 Analysis

Let us now analyze the reasoning process behind this prediction that the child
is likely to get hurt. This inference may be seen to be a direct consequence of an-
other inference; that the rock will shatter the glass pane resulting in an outwardly
spreading spray of glass shards that will hit the child. This inference is preceded by
yet another inference about the possible trajectory of the rock. The first inference
in this chain, namely that the flying rock will hit the glass pane of the window, is
derived by the visual system using perceptual and motor operations (in this case
scanning, that may involve a mere shift of attention, eye movements, or even turning
the head depending on the distances involved, would provide the needed geometric
information) in response to the internal goal of predicting the possible trajectory
of the rock. The second inference, that the glass will shatter resulting in an out-
wardly spreading shower of shards, is more interesting. It is clearly not derivable
from the environment since it has not happened yet. However, we possess experien-
tially acquired knowledge that glass panes shatter when hit by flying objects. While
this "chunk" of knowledge is verbalizable as above, it consists of more than what
this verbalization expresses. This is evident from the fact that we are capable of
distinguishing situations that "look" alike. For instance, we do not always predict
shattering when seeing or thinking about a flying object about to hit a transparent
pane. If we also know that the pane is made of non-breakable plastic or that the
object is made of soft rubber, we will not predict that the pane will shatter. Note
that the relevant knowledge about the material properties of the pane and the object
is conceptual (non-visual) in nature. Thus the knowledge that is brought to bear for
making a prediction has a conceptual component. It has a perceptual component as
well, which is what facilitated the internal visualization of the rock hitting the pane,
the pane shattering, and the shards flying outwards in the general direction of the
rock's trajectory. This visualization utilizes representations supplied by perception
and imaginal operations on them provided by the perceptual architecture. It is con-
cluded from this visualization that the shards may hit the child. At this point the
knowledge that a child hit by flying objects may be hurt kicks in (this knowledge
may be purely conceptual, or for very imaginative people, may have a perceptual
component that allows :,hem to visualize glass shards penetrating the skin), gener-
ating the inference that the particular child currently playing outside the window is
likely to be hurt. This of course, is the motivation behind the restraining act.

This scenario brings out some very interesting aspects of commonsense reason-
ing. One is that quantitative information, such as velocity of the rock on impact,
does not seem to have been used by the reasoning process. Therefore this type of
reasoning may be classified as qualitative reasoning. Other interesting aspects be-
come evident when one considers what kinds of mental or physical operations were
employed in order to make the three inferences and to which entities these opera-
tions were applied. The first inference about the rock hitting the window pane was
made by scanning the scene along a predicted trajectory. Thus, this reasoning in-
volved perceptual and motor operations appued to the environment (eye movement
for scanning) as well as computations on an internal representation of the environ-

j ment (predicting a trajectory). The second inference about the effects of a collison
between the rock and the window pane was done by an internal visualisation guided

177

Chandrasekana and Naryanan .4

by our experiential knowledge. Thus, this reasoning involved imaginal operations
applied to an internal representation of the environment. The third inference about
the child being hurt was made by applying conceptual knowledge to information
derived from the visualization.

It is clear that reasoning in this scenario is not merely a process of manipulat-
ing sentential or propositional knowledge. Rather, it is a process of goal-directed
inferences made from the environment and its internal representation perceptually
and imaginally. Generating predictions during such reasoning is mediated by ex-
periential knowledge that we have about events in the physical world. This is the
phenomenon that we call perceptual reasoning.

4.2.3 Perceptual Rules

An interesting question is how event predictions, which are experienced as vivid
internal visualizations, are made during perceptual reasoning. We postulate that
these predictions are driven by perceptual inference rules that are acquired from
the experience of interacting with the physical world. A perceptual rule is a piece
of inferential knowledge whose antecedent and consequent have perceptual compo-
nents. These components are abstract representations of perceptual events, which
can be matched to a large number of particular situations. In other words, a per-
ceptual rule is essentially a learned association between two perceptual events in a
sufficiently abstract form that it will match a class of particular perceptual events.
Such perceptual rules may often be verbalized, but such verbalizations typically
close some of the information contained in the original perceptual version of the
rules. For example, the content of a perceptual rule relevant to the aforementioned
glass shattering scenario may be verbalized as "if a flying object hits a glass pane,
the pane is likely to shatter," but the corresponding internal representation has per-
ceptual components that preserve spatial properties which can be used directly for
prediction. The acquisition of particular antecedent-consequent perceptual event
associations and their generalization into abstract perceptual rules are the result of
learning from experience.

A rule must also have conceptual (non-visual) conditions that allow discrimina-
tion among perceptually similar situations, to some of which the rule is applicable
while to others it is not. For example, one conceptual condition of the rule on shat-
tering could be that the object be hard and heavy. While perceiving or visualizing
a collision between an object and a transparent pane, determining whether the ob-
ject is indeed hard and heavy requires extraneous (to perception) knowledge. We
may know that rocks are generally hard and heavy and that the flying object in the
current situation is a rock, and thereby conclude that this conceptual condition is
indeed satisfied. Thus, the perceptual and conceptual components together serve to
determine the rule's applicability to any particular situation.

The antecedent of a perceptual rule contains abstract specification of a percep-
tual event that will match with a class of particular perceived or Imagined events.
For instance, the abstract specification of the collision event in the antecedent of
the shattering rule would match with a variety of perceived or imagined collisions
between different objects and glass panes of different shapes and orientations. This
raises the question of how a perceptual event is specified abstractly. With per-

178

I
Chapter 4. Perceptual Representation and Reasoning 71

I ceptual representations that are hierarchically structured with levels of increasing
detail (such as the object-centered representations of Marr and Nishihara [12] this

I is possible since the antecedent specification can be such that it will match the top
level(s) of perceptual representations of events belonging to a particular class (e.g.,
the class of collisions between objects and panes). This match need not be affected
by details of shapes and orientations of objects and panes involved since these will
be represented at lower levels of the representation hierarchy. The consequent of a
rule contains an operational specification of a predicted event, which the perceptual

I, architecture uses to modify the particular representation that matched the rule's
antecedent so as to reflect the predicted event's occurrence. This modification of
the perceptual representation drives the internal visualization of the predicted event.
Thus we are able to visualize the glass pane shatter, for example, immediately fol-
lowing an imagined impact of a rock flying through air.

Thus, perceptual rules have antecedents consisting of abstract specifications of
perceptual events which can match with a variety of particular perceptual events (ac-
tually perceptual representations of events delivered by perception), and conceptual
conditions that provide a finer discrimination capability. Their consequents contain
plausible predictions. Such rules facilitate not only the making of predictions, but
also the visualization of these predictions. How are such rules used? Particular

j perceptual events, whether witnessed or imagined, that match the abstract specifi-
cations of a rule will activate it. If the corresponding conceptual conditions are also
met, the rule is applied, resulting in the generation of an inference (prediction) and

I the modification of the perceptual representation of the triggering event to reflect
the effect of the predicted event. This enables one to visualize the predicted event.
All this takes place within the perceptual architecture.

This conception of perceptual reasoning is somewhat different from the tradi-
tional view of reasoning and deliberation. It was partly motivated by viewing per-
ception and imagery from the artificial intelligence perspective of reasoning. The
aim of all this theorizing has been to put forth one explanation of a kind of reasoning
that humans engage in routinely. This sort of reasoning has not hitherto received
much attention in artificial intelligence or cognitive psychology.

4.2.4 Perceptual Representations

In the foregoing description we referred more than once to hierarchically struc-
tured perceptual representations and a perceptual architecture. Therefore, a dis-
cussion of what we mean by these terms is in order. The reprementation of visual
information and its relation to the phenomenon of mental imagery have attracted a
great deal of attention from cognitive psychologists. There has beu considerable de-
S[1, 10, 15, 201 about postulating analog representationa for imagery as opposed
to uniform propositional representations. While all contentious iWaes regarding i'm-
agery may not yet be fully resolved, some properties of pwceual r ta
can be gleamed from the empirical and hilosophical literature as t topic. Four
such properties we the following.

[(1) Perceptual representioms must be compositional, dacm we caa compoes dif-
ferent (even previously unseen) mental Image quite eas* sad rapidly. Seder-

1 179

....

Chiadramtkaran and Narayauan

man's [4) theory of recognition by components sugests that such representa-
tions must be componential, and hence compositional.

(2) Perceptual representations must contain information about the represented oh-

ject at different levels of detail since we are able to imagine a previously seen
object at different resolutions. This suggests that the representations may be
hierarchically structured with levels of increasing detail, along the lines sug-
gested by Mar" and Kishihara [121.

(3) Perceptual representations must support an "internal depiction" of the repre-
sented object since a mental image is an experience of such a depiction. In-
deed, researchers have postulated mechanisms such as the visual buffer [10] and
symbol-filled arrays [20] to account for this depictive property.

(4) Perceptual representations must also have a descriptive component encoding
structural information, as Hinton [7] points out.

We have previously argued [5] that hierarchically structured descriptive representa-
tions, when loaded from long term memory into a specialized (to the visual modality)
architecture that provides modality-specific operations on these representations, can
give rise to the experience of mental imagery. Furthermore, we believe that these
perceptual representations are similar, in a sense, to the discrete symbolic represen-
tations used by computers. A discrete symbolic representation consists of structures
of symbols composed according to well-defined rules of formation. A symbol is just
a token, and by itself devoid of any meaning. Therefore the distinctive property of
such a representation is that its semantics derives from its interpretation, by means
of operators provided on it, by the architecture of the system in which it resides.
We suggest that perceptual representations are similar to discrete symbolic repre-
sentations in that they also have this property. In other words, the experience of
mental imagery and of applying operations like scanning on mental images arise not
from any inherent analog property of the representations themselves, but from an
interpretation of perceptual representations by a modality-specific architecture.

This characterization of perceptual representations is different from an analog or
propositional characterization. On one hand, unlike analog representations, these
are not depictive, but are descriptive. On the other hand, unlike propositional rep-
resentations, their interpretation is not based on some universal truth semantics,
but is dependent on the architecture in which they reside. Since in this view the
meaning of a perceptual representation derives from its interpretation by the un-
derlying architecture and processes that operate upon it, properties exhibited by
such a representation are not intrinsic to the representation itself, but stem from
the modality-specific architecture that supports it and processes that operate on
it. This feature provides a way to explain how non-analog representations can, in
principle, give rise to the experience of im ery by virtue of being interpreted by an
underlying modality-spedic architecture.

Perceptual repreSeMtI S a hierarchical structures comprising descriptors of

visual attributes such a shape, color, texture, etc., &ad of spatial reltions amnag1
elements. The hierarchical structure relects diffemt leves of detail at which a
perceived scene is encoded. The depth of the hierarchy and resolution of description U
at different levels deped upon aspects (such as objects ia the scene that wee

ISO

'I
Chapter 4. Perceptual Representation and Reasoning

I attended to, how closely they were looked at, etc.) of the act of perception which
produced the perceptual representation.

I A collection of descriptors in a perceptual representation that together corre-
spond to a distinct element of a scene (such as an object or part of an object) forms
a percept. A perceptual representation is made up of multiple percepts. A percept
is a basic unit or building block of perceptual representations. It describes all visu-
ally perceived information about a distinct element of an image. Each percept has
a corresponding mental image that results from its interpretation. This image in
the mind's eye is the depictive counterpart of the percept, which is descriptive in
nature. The description and the depiction are two sides of the same coin. Thus a
"perceptual representation consisting of percepts is both an internal description of a
perceived scene and a recipe for the composition of a corresponding mental image
through interpretation. Percepts provide compositionality, i.e., allow one to com-
pose perceptual representations (and corresponding mental images) from percepts
that are parts of representations of different images.

A mental image results from accessing relevant percepts in memory, bringing
these into the perceptual architecture, and composing these appropriately. This
visual-modality specific architecture provides imaginal operations on the represen-
tation. Just as interpretation generates an experience of mental imagery, the invoca-

I tion of an imaginal operation (e.g., scanning) concomitantly creates the correspond-
ing experience (e.g., that of scanning an image with the mind's eye). The imaginal
operations that the perceptual architecture provides on perceptual representations

I are similar to the operations that the visual system employs under perceptual con-
ditions, but they may not be identical [17].

Note that though the analogy of discrete symbolic representations interpreted
by an underlying computational architecture was used to explain perceptual repre-
sentations, these need not necessarily be symbolic in nature. These may instead be
realized as patterns of weights or strengths in a neural substrate. The preservation
of aforementioned properties is what is important. Our proposal is also neutral with
respect to the postulation of an analog medium for mental images and internal visu-
alizations. It may very well be that interpretation of the perceptual representation
of a scene results in the creation of a surface display in a visual buffer as Koeslyn
[10] suggests or the creation of a symbol-filled array as Tye [20] suggests. On theI other hand it may be the case that this interpretation merely produces the same
pattern of neural activation as that created by the topographic projection of the
retina image into the visual cortex during perception, thus creating the experience
of mental imagery. The main point here is that representations that are neither
analog nor propositional and an underlying perceptual architecture that provides
operations specific to the visual modality can possibly explain the phenomenon of
imagery as well as support perceptual reasoning.

1 (4.3 Discussion

In thks pap•e a phenomena. termed pecepu reamias wes illustrated with
am xample and eplained In tem of perceptual laure l. Sub bee tly,
we dasribed prepuies of perceptual tepremtAom wad ar&ttur th may

1 181

I
Chandraskaran and Narayaan

underlie visual perception and imagery as well as support perceptual reasoning. For
the moment at least, the strength of ideas in this paper les in the richness of their
implications rather than on the extent of their empirical support.

One point of this paper, therefore, is to suggest that it is worth conducting ex-
periments to gather (supporting or opposing) direct evidence. There is some indirect
evidence available. Yates and colleagues [21] report an experiment which showed
that individuals solving motion prediction problems, such as predicting the path of
a ball released from the end of a rotating sling, subjectively experienced reported so-
lutions as the result of a mental enactment of the problem situation. Furthermore,
they suggest that the source of this enactment appeared to be a number of rela-
tively unsystematic, mutually inconsistent, and situation-specific prototypes based
on experience, which capture typical aspects of motion. A precise characterization
of perceptual inference rules in terms of content and organization, if indeed these
are psychologically real, requires much empirical research of the sort undertaken
by Yates and colleagues. The phenomenon of "perceptual fluency" observed by
Jacoby and Dallas [8] is also relevant. They found that following a 24-hour delay
after subjects studied a word-list, their conscious recognition of these words was at
near-chance levels. But the subjects were twice as likely to recognize these words,
compared to control words, in a tachistoscopic-recognition paradigm. It is argued
that prior exposure leads to "perceptual fluency". On a similar vein, Proffitt and
Keiser [14] found that subjects were very good at rejecting anomalous motions when
shown videotapes of actual and simulated motions. If prior exposure can lead to
perceptual fluency in recognition and classification, is it possible that it can also lead
to perceptual fluency in reasoning? Koedinger and Anderson [9] show that expert
problem solving behavior in geometry can be modeled in terms of the instantiation
of schemas which organize problem solving knowledge around prototypical images.
The idea of perceptual inference rules in which perceptual events cue predictions
is not too far removed from this. Anderson [2] has pointed out that production
systems consisting of rules with antecedents and consequents are not incompatible
with imagery processes.

What about the implications of this proposal? One implication is that the
true nature of representations underlying perception and imagery may be closer
to a middle ground between the extreme positions within the propositional and
analog schools of thought. More relevant to the focus of this paper, however, is
the notion that reasoning may be situated or grounded in perception. Another
implication, therefore, is to suggest that much of commonsense reasoning is tightly
coupled with perception and that perceptual representations, not just conceptual
knowledge, play a crucial part in the reasoning process. Just as the paradigm
of case-based reasoning [18] provided an impetus for computational investigations
of memory-based reasoning, our hope is that proposals like this will provide an
impetus for computational studies of perception-based reasoning. In fact, there
is already a move toward legitimating the formal study of the use of diagrams and
pictures in reasoning [3]. Furthermore, studies of human reasoning also ought to pay
Close attention to reasoning procese tAt awe closely coupled with perception and

* perceptual tgpre•uemtatlms. A broader Implicatiom Is that nesoag may be coupled
with pecptio in modalies otwm Sha vision as waU. We 11ppor a pn "

182
S.l . . .* -

I
Chapter 4. Perceptual Representation and Reasoning

I expressed view [11, 17] that research on reasoning in artificial intelligence should

explore connections to vision and imagery.
I current research is on developing a computational perceptual rep-

resentation and reasoning in the domain of spatially interacting objects depicted
in diagrams. Limited space precludes a detailed discussion here (see [13] for an
overview). However, two aspects of this computer system that directly relate to
the focus of this paper and therefore worthy of mention are the computational
realizations of perceptual representation and inference rules. The computer rep-
resentation of an object configuration diagram consists of a hierarchy of symbolic
descriptors and bitmap-based depictions, both of which are accessible to reasoning
procedures. This representation is compositional, hierarchical, partly depictive, and
partly descriptive. Representational devices called visual cawes are used to encode
the predictive knowledge of perceptual inference rules. A visual case consists of
visual cues, conceptual conditions, and predicted events. We have developed a suite
of over sixty cases for the current domain (see fig. 4.1 for an example). Given a
prediction problem that consists of a multi-object configuration diagram and the
initial motion of one object, the system will go through cycles of visual analysis
and deliberation, and predict the temporal evolution of the configuration. Visual
cases come into play during deliberation. Visual cues are used for matching cases to
the current configuration, conceptual conditions provide additional discrimination
capability, and predictions of cases found to be applicable drive the next cycle of
reasoning. It is worth noting here that visual cues make visual case matching similar
to the instantiation of diagram configurations [9], and conceptual conditions provide
a means for the computational modeling of cognitive penetrability [16].I

I.

I 4.1: An Exampl ofa V l Can

Acknowledgments

I This researd has bee spported by DAUPA umdw AFOSM entract F-4MO-

-C-O11O sad a BP 1mwa* to the sewed authr.

183

Chandruekaran and Namyanan

References

[1] Anderson, J. R. (1978). Arguments concerning representations for meutal images.
Psychologcal Review, 85, 249-277.

(2] Anderson, J. R. (1983). The Architecture of Cognition. Harvard University Press.
[3] Barwise, J. & Etchemendy, J. (1990). Valid inference and visual representation. In

Zimmerman & Cunningham, (Eds.), Vimsahzation in Mathematics, Mathematical
Association of America.

[4] Biederman, I. (1987). Recognition-by-components: a theory of human image
understanding. Psychological Review, 94, 115-147.

[5] Chandrasekaran, B. & Narayanan, N. H. (1990a). Integrating imagery and visual
representations. Proceedings of the 12th Annual Conference of the Cognitive
Science Society, 670-677.

[6] Chandrasekaran, B. & Narayanan, N. H. (1990b). Towards a theory of commonsense
visual reasoning. Lecture Notes in Computer Science, 472, Springer-Verlag, 388-409.

[7] Hinton, G. (1979). Some demonstrations of the effects of structural descriptions in
mental imagery. Cognitive Science, 3, 231-250.

[8] Jacoby, L. & Dallas, M. (1981). On the relationship between autobiographical memory
and perceptual learning. Journal of Ezperimental Psychology: General, 3, 306-340.

[9] Koedinger, K. R. & Anderson, J. R. (1990). Abstract planning and perceptual
chunks: elements of expertise in geometry. Cognitive Science, 14, 511-550.

[10] Kosslyn, S. M. (1981). The medium and the message in mental imagery: a theory.
Psychologicul Review, 88, 46-66.

[11] Lindsay, R. K. (1989). Qualitative geometric reasoning. Proceedings of the 11th
Annual Conference of the Cognitive Science Society, 418-425.

[12] Marr, D. & Nishihara, H. K. (1978). Representation and recognition of the spatial
organization of three dimensional shapes. Proceedings of the Royal Society, 200,
269-294.

(13] Narayanan, N. H. & Chandrasekaran, B. (1991). Reasoning visually about spatial
interactions. Proceedings of the 12th International Joint Conference on Artificial
Intelligence, 360-365.

[14] Proffitt, D. & Kaiser, M. (1986). Why you cannot see what holds a gyroscope up.
Paper presented at the Annual Meeting of the Psychonomic Society.

(15] Pylyshyn, Z. W. (1981). The imagery debate: analogue media versus tacit knowledge.
Psychological Review, 88, 16-45.

[16] Pylyshyn, Z. W. (1984). Computation and Cognition: Toward a Foundation for
Cognitive Science. MIT Press.

[171 Reisberg, D. (1987). External representations and the advantages of externaliting
one's thoughts. Proceedings of the 9th Annual Conference of the Cognitive ScienceS~Society, 281-293.

[18] Schank, R. (1982). Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press.

[19] Shrager, J. (1990). Comnmosense perception and the psychology of theory formation.
In J. Shrager & P. Langley, (Eds.), Computational Model of Scientific Discovery
and Theory Formation, Morgan Kaufmann Publishers.

(20] Tye, M. (1991). The Imagery DeWate. MIT Press.
[21] Yates, J. et al. (1988). Are conceptions of motion based on a naive theory or on

pototypWs? Cognition, 29, 251-276.

184

4-.~. - . -- b *-

3 Reasoning Visually about Spatial Interactions

N. Harl Narayanan and S. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer arnd Information Science
The Ohio State University

Columbus, Ohio 43210
U.S. A.

IAbstract w

This paper Is concerned with how diagrams can
be used for reasoning about spatial Interactions
of objects. We describe a computational
approach that emulates the human capability of 2predicting Interactions of simple objects depicted
in two dimensional diagrams. Three core aspectsI of this approach are a visual representation
scheme that has symbolic and Imaginial parts. the
us* of visual processes to manipulate the ___________________WS___I
imaginal part and to extract spatial Information, --

and visual cases that encode experientialr
knowledge and play a central role In thejgeneration of spatial Inferences. The"e aspects4 Ridhngdto
are described adteapoMI urtdwt ii lc
an example. Then we show that reasoning with 3 - Rii mform

images Is an emerging and promising area of 3........ A1 Murh =Bootmh
Investigation by discussing computational and_ _ _

cognitive research on imagery.

I IntroductdonI

Humans quite often make use of spaftia informatin 2 TeApoc
imnplicit in diagrams to make infeences. For example, 2.1 Motdon Prediction ProblemseI anyone famiiar with fth oper dhn- of gears wil be able
to solve the problem posd hin RpmIg 1 by Imagining The class of problems we address is the following:
the rotarymoiona of gear1 being tmntite to the rod given a two dimensional diagram of the spatialf through gearZ mSu~ftQin hehri zmlif Vansao of configuration of a set of objects one or more initialthe rod unf it hit fth walL In such aluillone humasa motions of objects and relevant conceptual
reason about spel leal dn nOt5tot only- by w" information about themn, predict the subsequent
conceptual knowledge, but also by extractIng dynamics; of the configuration. Figure 2 shows aI constraints on such interactlions from a perceived typica example
imge This Iimegrated use of visua knowledge (about
spatial configurations) from the diagramn and 2.2 cagfhlve 101NsprtOUI cmnoep~ual Isnowledgeo (such as fte rgidty or plaftidty
of objects Involved) Is a very Interesting h s idrl evenencoite
phenomenon. In this pape we Mlustrate a sdenue lor the use of nwwal kn~ag by people when

iiuiaitrtlapproasc tam enwiles othi copability solvNg problems p(oes"y. 19611. Furthermore.
L f~~~f orslvigsirnfmplefledt pret MN-prublenis. inrmoepeowv reports of people An givena dhagr

I ~ ~~To aPpa win Pmee.*ipg of ti e i2 nemou s** C *rewew an AirbMAPlftfenc.

Sydney. AwbaL. August 1081, Muiatui View. CA: MwgW Ks&esm P~ulihees

F 185

like Figures I or 2 and asked to predict motions modality. These operations construct mental images
indicated that by looking at the diagram they were able using perceptua primilivee in the visual domain. Visual
to visualize the motion of 0one object causing that of representations in our computer model are theref ore
another through Physical contact. They appeared to structured as multi-level hierarchies that contain
be using (the image of) th disgrail in front of them imaitefdesrpins and symbolic descriptions of the
directly to simulate motions in their minds. These object configuration. Each level of the hierarchy
reports indicated the following, contains a symbolic description and an imaginal
(1) Given a diagram depicting the problem, humans description of the confiuation at a certain resolution.
quite rapidly focus onl localities of potential The symbolic description is built from parametrizedj
interactions. shape primitive W1e circles, rectantgles. etc.. wherea
(2) People also seemi to simulate or project the motion the imaginal description is a two dimensional pixel

*to determine the nature of interactions that will occur arra of fixed width and height in which a configuration
(3) For reasoning about the dynamics (e.g., how wll~ is depicted by object boundaries and Is implemented~
motion be transmitted after a collision?) humans bring as a bimap. in the rest of the paper we wIN use the
conceptual knowledge (e.g., gears are rigid objects) term *diagram" to refer to this boundary-based
and experientis! knwledge (e.g.. If an object collides renderin of the object configuration. Thus the visual
with another. It typically ransmits motion in the same represen~taton is &Wa (symbolic and imaginal) in
direction) to beer on the problem. nature. The two types of mental representations
We have developed an approach that emulates these (surface Images and deep encodings) tha Kosslyn
capabilities. 119611 proposes refet a skilar duality.

*2.3 Representation The most interesting property of this

Thespeifiatin o a oton rodction robem representation Is that It simultaneously provides J
Thespeifiatin f amoton re~cton robem abstract symbolic descriptions of an object

consists of a scewne depicting the spatial configuration configuration and dhrecty captures, in the Imaginal
of the objecits involved and conceptual Informiation descrptions specific spatia Information about the
about their properties (see Figure 2). The spatlial objec confiuratio (tio extent of contact between I
configuration Is represented using a *visual two surfaces, for examiple). The justification for our
representatloW while conceptual Informat~o about decision to sructur the symbolic descriptions in
object properties Is represented declaratively and terms of pfaunetnlzd shape printWtve stems from I
linked with corresponding object descriptionsl In the shape repr-esentedo theories tha utilze primitives
visual representation. In our computer mnode the Nio geons [1sdlersmnmi 19901 and generalized cones
visual representation at a problem specification Is (Marr and Nishihwaa 19761. Multiple levels of
Interactively constructed prior to problem solving, descriton are provie In the rersnainto allow I
whereas in the case of humans percepta processes visual prcese to operate at dW fren levels of
deliver such rersnttos resolution.I

Mental representation of visua Mnorinallo and Ita U. Reasoning
relation to the phenomenon of mnenta kmagery have
been the foc of consider"e resmh hin cognitive The basic modalm of reasonVin s as folows. The
science (SNledrman. 1990; Fb**ce 1989; Koss"yn system goes thrugh a sequence of deliberative
19681; Pylyshyn, 1961). A cO eiaIssue here Is the states. This sequenc corresponds to the changes
quesio of how menta hniagy Oat appess to be that the ini"a objec con gfigrtin WXdegoe due to
anaglgic In nature can arise from underling motion and in-1racion- of objel c. Each deliberative 1
representations that wee conside red to be stat represenft a parkticla confliguration tha the

* ~~proposiftioa. One hypothesis regadhn othi Issue objet assume at somne point during 96l evolution of -
(Chandraseltaira and Narsynan 19901 Is that behavio. What dMIniiguishes a deffberailve stae from
repesentationsa for different sesry" modallties are other states Is tha ft represenft a confliguratlion in
operated- upon by interpreter 11Iaprovide privleged which an -is wra o (such ns colision) ha occurred
operations specifMc to tha modaliy, inkxxg bindkin tha wO li cage the subsequen behavior of objects.]
the symbl In the repreetato to perceptual The term deliberative reflers to the necessity of i
prnlmleeh Inth orrespoldhIg senory do wal. Thus wdelb tergon th VAtaie at theise StleS in order to
"ou usMW 10 Ith 1111ove qussefl Is OW syMbolic pred ictfuur behavior of oibjects. A significant1
represoentaonsa of visual 2111inolmdsn we iNtrpree chwasritio of his degihron Is ft cowmbNined use
by mechanisms th Me epeC11111119 to the vsalg of perceptual infomtion from tedlsri M m ad
moda~lty and which provide operaeions tiores to Othi concptualiknowl aedge relevan to Ine sitation,

* ~186 I

y the Stsmh liM dera.t a nigal surfac
redctinsnon-ya-aI Closed boundarms damm niid obiectsJcoodision Contacts allow sihdmi

usi Pincein. 4. A VimI C

Rouge3 A t~n alal~ ~iM~~bear on m9Akn spatial Inferences in similar situations
Is moodly acquired through experience, and so in the

The transition between deliberative states Is computer model experiential knowledge has been
accomplished by two groups of processes. In oae, given a'centrl role in deciding how to proceed from a
purely visual operations such as attention-focussin, deilibeativ state. Experiential memory is considered4scanning, boundary-tracking, and contact-detection to be an organized and Indexed collection of cases
are used to Identify significant aspects of the current [Schaenk, 19821 and case-based reasoning is a
object configuration from the diagram (e.g.. locaring computational paradigm for modelling the role of
interesting regions, Identifying suraces of potential experience In problem solving [Kolodner andIInteraction, etc.). to reason about how the Simpson, 19891. Therefore, representational
configuration will evolve (e.g., project surface structures called 'visual casesm have been developed
motions), and to detect the next deliberative stateo. A to encod Itnowledge aqplcabl at deliberative states
deliberative state is detected by watching out for and to facilitate Infermncing. Each case represents a
certain events as; the configuration depicted In the typical spatial event. Since cases represent
diagram changes. The establishment of a now contact experiental knowledge, they may not be logically
between objects, the eliminatiomn of a previously parsimonious or mutually exclusive. A visual case hasI ~existin contact the establishment of a new support three parts. One Is Information about spatial
relationship between objects, and the removal of a configurations to which fth case Is applicable. Cases
support relationship are some examples of events we called *vlosal because this Information Is visual In
which Indicate a dellberatviv stale. Motivations behind nrob" and Is the I"* by which relevant case got
and justifications for these processes derive from the selected during remning. It may also be viewed as
extensive lierature on mental Imegery, some of which an 'abstrat Mnae that depct the essential aspects
are discussed In section 3, and the wourk of Chapman of coonfigurations to which the case Is applicable.
119901 and Ullman [1966j on visual routines. This Becauses of this abstractness a case can be matchdgroup of processes corresponds to the humarn with a variety of spcii configur-atIos This property
cognitive prMes of Thnaglnng obviate the need for a larg number of cases. The

second pat Is nan-visua inforMatin tha quafllle the
The secani group of processes accomplish thes visual pert further andl It Is used for deciding the

salwornend.o. took of Millisb@don Here knowiedge applicabiuly of a cae ft a particlrsi Slhodo The tird
about how i.Nteractin physia oject tend to behave pat ise5 prdicte evovntaleclig objelIn the spatlialunder variou conditions Is used toc predict the configuration repr~eseted by the case. This event
behavior of objects foliowing the current delibrative may5 Speaify a ste chup(ga boflfrc
state. We tall a speclific poeillun on the form In which being applied on an object), a continuous changeIthis Itnowledge is avaliable ari the way in whichI s (e-g., an object moving In a pjticui dkon, tc
utilized. This Is describedl next A proess mods! of
visual reasonin Is shown in Figurio3 Humeis ar skidled at b lenin percepWua andI- ~conceptual Informallon In genwerain spatial

We believe that the Itnowledge humane b"n I* Inferences. To M"avt thist first consideor yaw

187

GoaLia abou

sp"u inaratmu

........... .. oof e 6 o i

operal scu i.dietd de~I ~rjcoU dimw- dlboeedv

the scam moca o &-aplkau buomnd

Ioh =for suifoca wtido boquidedwe with
uutsgwaehaig (or ist new Vbisnal w

tape. Stanbv

Sublo.A Subpal: Subgbiei S yarge Subgo'k
Iocgesatface. to0I an "10 y "4Jnyo

6. O sdnof _____.NI .16.
amaedamnta P ot PemA

dwloo t I for iuminmeg wideb viulPeaCe.

demedc. wacthing fo YbWd cm codidoII.

cOI o .cam.

La

prediction about the motion of-object after object 1 in the current object configuration. The remaining
collides with It, given the problem specification of events serve to guide subsequent steps of
Figure 2. and then notice how this prediction wiN reasoning. Since acase brings conceptual knowledge
change it the specifications were changed to indicate to boar on visual reasoning, this mechanism of
that object Is non-rigid (say, mad of rubber) and that inference may be viewed as a computational
obfet2 Is fixed on surfac3 The visua and no-is redzaI~m of cognitive penetrability or the Influjence of
puts Of a case exPlictl captur Ithi aPect Thus the tacit knowledge onn mIent Imagery [Pytyshyn, 1981.
Intent Of visual cases Is to represent simpe chunks of
experiential knowledge about spatial events that 2.5 An~ Exarrple
humans typkcal have, arid to model the blending of
conceptual and perceptual information In making In this s@cd aon we present a piroblem. solving episode

saiaInferences. An ezulipl of typica knowledge in somt e detall, The specification of the problem, which
abputia eP vUlen isa rigid objec resfti on a rigid includes a depiction of an Initial configuration of

fltsurface, whncolilded by a meiawg rigid object will objects. an iniia motion and relevant non-visual
tend to Wie In fthe- isn *eCUan The schernatJc: of properties of the cbjectS, Is showf In P1gire 2. The
a corresponding visual cIIIIIIIII is sl-im In "iu 4. goal is to predict all resulting motions by reasoning

about spailM Interactons tha will occur MIon the
After a deilberave sof is detected visua came objects.in our coputr modalconrol ofmrasoning is

we retreve and appliedto predctensm that lo. done by a procedure that generates goals and
The retrieval of caeee relevant to the spatial suges and activates relevant processes to
cc -1gixl alon in the dlepare Is bsedW on visual cues. achieve Owen. Thus an execution trace *4 apera
Forom wlon the retve~d cues, lppoincaie ones we a tree corule*t of goal ubos, an rcess
selected by usin i~nvaomion dmW objec p opperiles The goal generation 1011Iodwsh process model in
(which Is avalabe as put of problem spe-PIncafon) to Flo" &e3

verfy the noni-visua part of Mie cams. Events 1
predicled by the applicable caseis we furtie prne Flgom 5 shows a partile execution trae for this

by vertiftig Ivwoug visual processes their iesmaift oxuilie. *sAsNN gout speffia Intarerc"'ios "he

188

top level goal and it has four subgoals as shown. computational advantages afforded by diagrammatic
Consider the first subgoal 'locate interesting spatial representations and perceptual inferences that suchI regions*. There is a set of heuristic criteria to locate representations Support, for solving physics and
interesting regions, one Of which Is that regions geometry problems. Koodinger and Anderson [19901
representing touching surfaces of multiple objects describe a model of geometric proo problem solving
are interesting. The visual process corresponding to In which parsing of a diagram of the problem to detect
this subgoal focuses onl each object In turn, tracks its specific diagram configurations Is a key step. These
boundary, and looks for regions that satisfy the configurations then cue relevant schematic
criteria In this example it finds the bottom surface of knowledge for proceeding with the proof. VisualIobject2 as shown In Figure 6.a. Next, surfaces that cases represent a generalization of this idea.
have the potential for interaction are located (Figure Logicians have also noted the power of visual
6.b shows the surfaces Identified for the current representatins. Barwise and Etchemendy [1 9901
problem) and another process projects the motion of Illustrate the role of visual representations in
moving surfaces that are Identified to have Interaction mathematical reasoning through a program called
potential while watching for the occurrence of HYperproof which allows the user to reason using
deliberative states. The first deliberative state soental and pictorial forms of information.
detected Is the configuration In which contact occurs
between objects 1 and 2 and the diagram Is modified Despite Intuitively compelling evidence f or the
to depic this configuration, as shown In Figure 6I.C. use of Imagery by humans, there has not been much
The next subgoal Is to predict subsequent dynamics work In artificial Intelifgence toward endowing
of this configuration and Othi Is accornplishod by M* maichines with a simla capability. An eary program
application of visual cases. Three visual cues (the that utilzed diagrams was WHISPER (Funit. 1977]

peence of a rotating objec and a stationary object. whc addressed rotation, s"dn, and stability of
adthe occurrence of a collsion between the two) we blocks-world struClures. More recently, work on using

used to retrieve cases, and visual keys of cases are pictorial or aagld'rpenatosfor simulating
matched with the current configuration by Inspecting th ehvo of strings and liquids in space has beeni its visual representation. The availlability of symbolic reported (Gardin and Meltzer, 1969I. Shrager [1990descriptions as well as diagramse In the visual describes a computational model of understanding
representation allows the matching of visual keys to laser operation In which reinterpretation processes
proceed at an abstract level without recourse to mutlze event dlepiction mIn an Ica ic nw~nory as wei asItechniques like template matchling. A visual case In a propositional memory. The research on
sim'ilar to the one shown In Figure 4 (except that the voMMonall mdeliling of the cognitiv process of
movinig object Is undergoing rotation) Is found to be spatial reasoning with dlagrame jNaraya mu , 19911 isI ~ ~relevant and applicable, and the event that It prdcs Yet another step towads realizing the fuli potential of
i3 found to be feasible in the current configuration. Ma reasoning by computers.
Non-visual conditions associated with this case are
sirMiar to those In 1iur 4 w4and "aleely verified fromt 4 Concluding Remarka
the problem specification. The resulting prediction Is
shown in Figure 6.d. As the proesm miodel shows. We have describe a novel approach to reasoning
after Othi step fth entire cycle Is epeae an i sWIn the about spaWIt -c wa aon. Since our aim In this paper
next detected delbeative state oblecd has collded has been to prowid the reader with an overview of all
with surfac*4. This times a case that predicts ceesafieon si~niicai aspects of visua reasoning withi the
of motion gets applied anid Figure &0e show the final finme space avaialable, the descriptions have been
confguration. neoiaeSWU schemadc, In charlactr Further details on

compoanents of Othi approach - structure of visual
3 Related Work 'o ntolln i, how visual processes wre composed

from basic visual operallone, Irdeding and adaptation
In Othi section we pr esent coinuflonal and cognitve of visual cuese. the computer program that
research which touches upon imeagry, in support of Implemets this .oei eWc- can be obtaine from
our contention tha kmaginal reasoning Is an emergin laaa N-0 991
research wase that Is highly pronMing. Cognitiveo
scientists have d5IoII-V d ft no only ft -oeru The advantage of usin diagras in this
role of imagery In humnan prablem sing buWA also fth approach arltee gromh propert that spatial
advantages of Incorporallng simila reasoning hift omil such nas bstasi to m otionor pathways
caailte F In comrpuler progrure.f Forexiaspe tLdn go0 guide mdotio ar dirtWy eviden in images. Our
and Simon 119671 persuasively argu for Owe apprnoad Is not only lsrive, butd fleile as wail.

189

ObjeMt which have irregular shapes that will make (Flint. 19771 B. V. Funt. WHISPER: a problem solving
their algebraic representations complex can be system ut hIig95grarns and a paralle processing
represented arnd reasned OAou In Mhe same wy a retina. In Proc, International Joint Conference
regular objects If dlaft~ft are used. on Amflfdcal Inteflgence. pp. 459-464, Cambridge.

As Frbu an coleages ighty pintout (Gardin and Meltzer, 19891 F. Gardin and S. Meltzer.
[Forbus of al.. 19871, there can be no purely Analogical representations of naive physics.
qualitative method for Spatial reasoning. What Is Artiicial Intelligence Journal, 38:139-159. 1969.
required is to integrate qualitative and quantitative [Koedinger and Anderson' 1 9901 K. R. Koedinger
mnethods so that qualitative ones provide approximiate and J. R. Anderson.' Abstract planning and
solutions that serve to focus the application of perceptual chunks: elements of expertise in
quantitative methods to only those aspects of the geometry. Cognitive Science, 14:511-550, 1990.
binital solutions that require more precision or further [Kolodner and Simpson, 19891 J. L Kolodner and A.
refinement. With this goal In mind, we are currently L Sim~pson. The MEDIATOR: analysis of an early
investigating the integration of visual reasoning with case-based problem solver. Cognitive Science.
other qualitative and quantitative methods (Naraywanar 13:507-549, 1999.
and Chandrasekarwn 19911. (Koeslyn, 19611 S. M. Kosulyn. The meidium and the 1

message In mental Imagery: a theory.
Acknowledgments Psychological Review 88:46-46,1961.

[Lwtdn and Skymon, 1987n J. H. Larkin and H. A. Simron.
A discussion with Stephen Kosslyn provided Why a diagram Is (sometimes) worth ton thousand
inspiration duuing fth ear stages and Jeff Shrager words. Cognitive Science, 11.65-99, 1967.
and Janet Kolodner helped clarify many Issues durin [MW and NW*mMia 19763 D. Manr aid H. V. IMshwa.
the course of this research. We also thanik the Representation and recognition of the spatial
anonymous ref erees for their suggestions. This organization of fthee dimensional shapes. Al
research Is supported by DARPA.& AFOSR contac 8 Memo 377.- Artificial Intelligence Laboratory. MIT,
F-49620-89-C-01 10 and by AFOSR grant 0 890250. Cambrkidg, MA, 1976.

[Narsyanan, 19911 N. H. Narayanan. A study of
References representations and processes for reasoning

[Barlseand tchmend, 1901 . Brals an J. visually about spatial Interactions. Doctoral
(Bawis an Etheend, 1901J.SaiiseandJ. Dissertation, Department of Computer &

Etchemendy. Visual Information and valid Information Science, The Ohio State University,
reasonin. In W. Zinimerman, (Ed.), Visualiztion kn ColmbusA, OH, fortcoming.
PdathalIN*&Mathematical ASoIatOC10n Of America. [Naraysnan and Chandrasekaran. 19911 N. H. I
Washington D. C., 1990. Narayanan and S. Chandresekaran. Integration of

(Bleerman. 1990311. Biederman. Higher-level vision. qualitative and quantitative methods In visual
In 0. N. Osherson, S. M. Kosslyn, and J. M. reasoning. In Proc. 2n Conference on Al,
Hollerbech, (Eds.). An Invitaton to Cognitive Simulatio and Plannting In High Autonomy
Science, Volume 2:* Visual Cognilion anW Acftio Systems pp. 272-278, Cocoa Beach, FL. 1991.-
MIT Press, Cafftride, L4A, 1990. (Pylyshyn, 19613 Z W. Pylytshyn. The Imagery

[Chandrasekaran and Naraysnan. 19903 B. debate: anskogu media versus tacit knowledge.
Chandrasekirn and N. H. Nwayuiui hItegeatil Psychologhw Review, 88:116-48, 1961.
imnagery and visue! represanefteeu. In Proa 12"' [Schank. 19623 R. Schankt. Dynami* Memory: A
Annual Con foeveic of the Cognitive Science Theory of Learnfng kv Compouter anid Peoole.
Soceley. pp. 670-87& Boamn MA, 1990. Cambrdge Univeraty Pee, New York. 1962.

(Chapman. 1990310. Chapmn-L Iflbuiiiedlvie vision: (Shrager, 19903 J. Shrager. Commonsens e
archtec %ture. Imp! fienaltaft -, and use. Technical perception and the psychology of theory
*eport TR-90-06, Telm Research, Palo Aft. fornilon. hin J. Shrager and P. Langely (Eds.). '

CA, 1990. Computatona Aftkie of Sdervfft lc aowvey and
(Finke. 1"969 R. A. Fink*. Principle of Mentalt remwy FormuOn Margoi Ksaiukn, San Mateo.

bwgqey. MIT Prees Cambldge MA, 196M. CA, 1990. I
(Forbim St Mt., 19671 K. 0. Fwb^a P. Nfleen. and IL "ka 106"36. Lftmui Vieual rulles. In S. Piniter.

Fal"~g. aelItiv* Mnem~a: a frNewwuriLn (Ed.). f*buaf Cognii~- MIT Pmess Cambidg.
ProC 10MJ lnfteeMnal JoWn Conferenc, on MA, I96 [1L
Artifcia ntel~gene pp. 430-4M, MWio, tl~y,

190 I

V.

I
I
I
I

Combining Functional Representation andI Structure-Based Models for Smarter

Simulation

SSusan T. Korda, John R. Josephson, Dale Moberg

June 30, 1993

Computer simulation of devices usually consumes significant amount of
computational time. Making simulation more efficient and goal-oriented
might overcome this problem. The main objective of our model is to provide
solutions to this problem by alloying functional representation (FR) with
structure-based models for simulation.

Based on the VHDL framework, we selected a very general model of
device structure:

A device is considered to consist of a box with a set of input and out-
put ports, and possibly a state, and can be characterized by a set of
functions to convert the values at input ports into specific values at
output ports at particular times while possibly changing the state of
the device.

S* A device can consist of a set of subdevices, each having its own func-
tions, input and output ports, internal states, and also a set of
connections joining the ports of different subdevices.

"* Signals (values) at input ports of a component may trigger signals (values)
at output ports, and state change of the component in finite amount
of time.

"" It is assumed that a connection transfers the value from an output port
across a connection to an input port, (or from the input port of a
component to the input port of its subcomponent) instantaneously.

i 191

.3-

1

I

e Subdevices/subcomponents can be embedded in components of devices to
any finite level of depth.

The above described framework applies to a large variety of devices, from
software/hardware devices to devices containing pipes and fluids, etc.

In the followings, by simulation, we will always mean simulation based
on this kind of structure/behavioral model.

Our major goal is to

"* show, how FR can be smoothly combined with structure-based models for
simulation in a common framework,

"* what are the advantages of combining the two, and how FR can control
the simulation efforts,

"* and what are the tradeoffs between controlling simulation by FR and
simulating brute-force by using the structural model alone.

Functional Representation Combined with Struc-
tural Model

We supplemented the functional representation language with further ele-
ments in order to support structure/behavioral models of simulation. We
retained most of the earlier additions to the language, like the parametriza-
tion of components, and the possibility of defining different relations among
them (e.g., can-run-on(software hardware)) that we had made in the previous
stage of our current project [1].

We added several new features to the representation:

* Functions can achieve their result states in response to some starting
state, and signals arriving to their input ports. The set of input ports
used by the function, and the set of output ports affected by it are
subsets of the input and output ports of the component the function is 1
belonging to. The user specifies by means of a transfer function, how
values at input ports and the initial state of the component transform

into values at output ports and a new state of the component in time.

1

* 192

LI

I

Transfer functions are ordinary LISP functions, they specify how FR
functions are being achieved.

FR's TOMAKE statement that describes the state having been achieved
by the function has been retained in the representation for explanatory
purposes. The TOMAKE statement provides a higher level/more
abstract view of the state being achieved by the FR-function than the
transfer function does, therefore, it can be more conveniently used to
understand how the device is functioning.

An example of the component specification can be seen in figure 1.

9 Functions can also have their own input and output ports which are some
subset of the input and output ports of the device. The user specifies by

I means of a transfer function (written in Common Lisp), how values
at input ports and the initial state of the component transform into
values at output ports and a new state of the component in time. I

By transaction we mean a set of output port values, and a state of
the component at some specific time.

I The inputs to the transfer function are the values at the input ports
of the function, the actual time, the state of the component, and the
projected future transactions of the component (which were created as
a result of earlier events associated with the component); and it creates
a new set of projected transactions, and a new state of the component

Sat a projected later time. 2

Any component may contain subcomponents connected by a set of
connections (joining ports of different components).I ' Estimate transfer functions have also been introduced. They are used for complex

components / functions with a deep substructure hierarchy. If the details of the functioning
of the given component / function are not important concerning our problem-solving goals,
and we do not want to explore it in depth, we still may get an estimate on the function-
ing of the component/function using an estimate tra•nfe- function. They work similarly
to regular transfer functions, but a short-cut of a possibly deep structure/substructure
hierarchy can be provided. The results produced will only be estimate values.

By using estimate transfer functions, simulation can be continued, even if a portion of
the functional hierarchy has not been explored.

If 2Signals that are transferred across the device carry an identifier and a timestamp with
themselves, so the time they spent in the system can be measured.

1
!,I

' i 193

......................................- , -

COMPONENT A/D
PARAMETER

SF 2000 "Sampling frequency:" I
BS 1024 "Buffer size:"

INPUT INIT

signal
OUTPUT s

sample

FUNCTION
FU TI InitializeA/D TOMAKE STATE active(A/D) = 'running t
INPUT

INIT
TRANSFER-FUNCTION tf-initialize-A/D

(defun tf-initialize-A/D(inp-list state-var-list parameter-list
func-params time trans-list) ...)
FUNCTION

sampling TOMAKE sampled-signal AT-PORT sampleINPUT

signal
OUTPUT 1

sample

BY TRANSFER-FUNCTION tf-sampling
(defun tf-sampling(inp-list state-var-list parameter-list func- 1

params time trans-list) ...
)STATES]

active('idle 'running) = 'idle
buffer-available = BS

END COMPONENT

Figure 1: Component specification for A/D.

]

4 1944

I
!

* We define functional groups as a set of functions of a component. Sub-
structures within a component (set of components joint by connections)
belong to one particular functional group. The role of the functional
groups is that different subsets of functions may be implemented by

different substructures, (but there is no intersection between different
functional groups, or the substructures belonging to different functional
groups).

One example for the use of functional groups can be seen in the rep-
resentation of Main-CPU in our prototype. Main-CPU has four func-
tions:

INITIALIZE, FFT, Walsh, and filter.

I INITIALIZE has one input port, ON, and one output port, INIT.

FFT, Walsh, and filter all use the same input port, signal, and each
of them have separate output ports. It means that the substructure
describing FFT, Walsh, and filter intersects, therefore, these 3 functions
are grouped into one functional group.

INITIALIZE is realized by a completely distinct substructure, with-
out any common part or connection with the three other functions,
therefore, it belongs to another functional group.

1 * As in the usual FR, the causal processes can also be specified by which
the functions are realized. OR relationships are allowed between theseI causal process descriptions in order to represent alternative ways/causal
processes to realize certain functions. (It is similar to the VHDL fea-
ture that multiple architectures can be specified for one entity.) These
alternative causal processes may play many important roles, among
others they may be useful in order to maintain the reconfigurability
of the device where alternative causal processes might correspond to
alternative configurations (software- hardware assignments).

e Functions or functional groups can separately depend on conditions
based either on traditional states or relational states (usually repre-
senting some particular software-hardware assignment, but relationship
of any kind can be used) under which the function applies. Connec-
tions between ports can also be conditioned either individually or in

I

i 195

ii

Ii
Ii

CONNECTIONS

(4 sample-main OF Main-CPU => sample (FFT OF Main-CPU) [
5 sample (FFT OF Main-CPU) => sample (FFT OF fft-main)

6 FFT (FFT OF fit-main) => fit-transform-of-sample (FFT OF Main- I
CPU))

IF RELATION running-on (fit-main Main-CPU)

Figure 2: A portion of the structural description for the FFT, Walsh, filter
functional group of Main-CPU. J

any kind of groups. Connections are named so that they can be easily
referenced by causal process descriptions.

A portion of the structural description can be seen in figure 2.

e Components can have instances. Values of component parameters can
be separately set for each instance at its creation, (or any later time).
A separate set of input and output ports is created for each instance of
the compcnent, but all attributes of the component (functions, trans-
fer functions, states, etc.) are inherited. Connections can be created
between ports of either components or instances (Connections are not
inherited by the instances.)

e The state transitions of causal process descriptions (cpd's) can be
described either by connections, or by some function of some compo-
nent, or by some cpd's. The state transition can be conditioned on
some assumption (described by a PROVIDED clause), or on a set of
configuration-dependent relationships specifying the applicability of the
state transition.

The state or the value of some port can be made explicit at any point I
of the cpd. (See example of cpd in figure 3).

Representation of Resource Use 1
Resources are specified for every component of the device individually. The 1
amount of the resource may depend on some parameters of the component

1
196

I
I
I

CPD sample-and-transfer

PORT signal OF REAL-TIME-SPECTRUM-ANALYZER

CONNECTION 6 OF REAL-TIME-ANALYZER

PORT signal (samplingOF A/D)

USING FUNCTION sampling OF A/D

PROVIDED active(A/D) = 'running
PORT sample (samplingOF A/D)

CONNECTION 7 OF REAL-TIME-ANALYZER

PORT sample (TransferSampleOF bus)

USING FUNCTION TransferSample OF bus

PROVIDED active(bus) = 'running

CONNECTION 8 OF REAL-TIME-ANALYZER

IF RELATION

OR

(running-on (FFT-main Main-CPU)
running-on (Walsh-main Nlain-CPU)

running-on (filter-main Main-CPU))

PORT sample-main OF Main-CPU

CONNECTION 9 OF REAL-TIME-ANALYZER

IF RELATION

OR
(running-on (FFT-dsp Main-CPU)

running-on (Walsh-dsp Main-CPU)

running-on (filter-dsp Main-CPU))

PORT sample-dsp OF Main-CPU

END CPD

Figure 3: Description of the sample-and-transfer causal process.

197

iL ... _,_ _ __...

USING RESOURCE (AT ESTIMATION-LEVEL 1)

(* (* BS t22) 0.84) OF Main-CPU-time WITH TOLERANCE 0.01

USING RESOURCE (AT ESTIMATION-LEVEL 1)

250 OF Main-Memory WITH TOLERANCE 10

Figure 4: Resource-use estimate for function Walsh of Main-memory.

or on the entire component.
We can represent resource use of functions or configurations at different

levels of estimation. The level of estimation depends on the depth in the
representation (estimates at subcomponent level are usually finer than esti-
mates at component level). The accuracy of the estimate is characterized by
the value of tolerance attached to each resource use specifier: the deeper
the level of estimation is, the smaller the values of tolerances should be. (See
example in figure 4.)

There are resource use values attached to each software-hardware assign-
ment, these are the rawest estimates. The actual values of resource use are
described at the deepest component level (that does not have already sub-
components).

External Conditions

External conditions are represented in a separate section of the combined
representation. Specific values at particular ports of the device are allowed
to be placed at any given time.

States can be instantiated to specific values in the STATES subsections
of components.

Simulation Process

The actual simulation starts with placing the values specified by the external
conditions to the appropriate ports of the device.

- In every problem-solving cycle, the set of earliest events is determined. !
An event can mean either a component that is able to fire, i.e., has all the

I

198 -

'I
I
I

needed signals at its input ports, or it can mean a value arriving at some

I (output) port which can be transferred to another port through a connection.
If there are several events that may happen at the same time, the causal

process descriptions can be used to order those possible events (as will be
I discussed later in detail).

If a particular component is due to fire, (possesses an active event) and all
of its conditions are satisfied, then either its transfer function will be invoked
(if the component does not have subcomponents), or the substructure of the
component will be traversed, and the input signals will be transferred through
"the connections. The simulation process is complicated by goal-dependent
decisions 3 as it will be discussed later.

The simulation terminates if

* either the predefined simulation time has been elapsed,

* or there are no more transactions left in the system, i.e. no more event
jt can happen,

* or our problem-solving goal has been satisfied.

Advantages of the Simulation - Functional Rep-
resentation Symbiosis

Placing FR at the top of the simulation model results in representational
benefits, on one hand, and also provides significant advantages in controlling
the problem-solving process, on the other hand.

Representational Benefits
The FR language makes a very important distinction possible between func-
tions and components (as parts of the structure of the device).

The simulation language, VHDL, can also represent functions, the entities
I in VHDL can represent either functional or structural elements. Nevertheless,

VHDL cannot make any distinction between the two, cannot describe how
3 e.g., estimating resource use and checking on the estimates in each step if the goal is

deciding resource-satisfiability

I

1 199

I

I

structural and functional elements are related to each other, and it may be
a major drawback for several purposes (for example, diagnosis). 4 I

Another advantage of using FR is that causal processes that describe the
blehi,%ior of the device are represented explicitly. Though, this information
is included also in the VHDL description of the device, in the form of how
signals traverse the system, it is hidden within the representation, and cannot
be used efficiently for controlling problem-solving. In particular, we would
like to use causal process descriptions to control simulation based on pre-
defined problem-solving goals.

Another advantage of our representation is that causal process descrip-
tions, or even the structure of the device (the connect.ons between the parts)
can all be conditioned either on assumptions, or on configuration-dependent
relations, making explicit representation of reconfigurability possible.

Using the Combined Model for Problem-Solving I
Our main objective is to reduce simulation efforts based on the goals we
would like to achieve by the simulation. Currently, our first goal was to find
out whether a given configuration would work without exhausting any of the
resources, the second goal was to determine the values of the signal at a
pre-defined set of ports.

Deciding Resource-use Satisfiability

Our strategy was the following: I
* In the first step, we determined the set of critical resources based on

the highest-level resource-use estimates. 5

* Simulation has been applied in an intelligent fashion to find out more
about critical resources (it will be discussed later in detail). 1

4Example: Exactly the same structural port may be used by more than one function
of the component. In the ideal case, the different kinds of uses of that port can be examined
independently. However, if the component fails, the two uses of that port can conflict with I
each other.

In our prototype, the signal port of Main-CPU is used by 3 different functions, FFT,
Walsh, and filter, every other port is used by exactly one function.

'Critical resources are those for which we cannot decide whether they can or cannot
be satisfied based on earlier information.

1
1

200 1

i __________

I
I
I

* If one of the critical resources has been exhausted, i.e., we know for sure
that the given configuration cannot function, the simulation will be
stopped immediately.

. If one of the critical resources turns out to be sufficient without any
ambiguity, it will be removed from the set of critical resources.

* If there are no more critical resources left, the simulation effort will be
stopped. 6

* If the simulation terminates due to either of the termination conditions
described earlier in the 'Simulation Process' section, then the remaining
set of critical resources cannot be resolved by the simulation, only the
estimated value and the tolerance can be decided.

Determining Values of Signals at a Predefined Set of Ports

This goal is simpler to implement than the previous task. Simulation should
be performed that terminates if every goal has been satisfied, i.e. every
interesting port value has been determined.

In case of both goals, our effort has been focused on intelligently con-
trolling simulation based on FR. We developed two different strategies for
this purpose, and applied those in a combined fashion:

* One method was to control the depth of reasoning based on problem-
solving needs (i.e., not to descend deeper into the component-hierarchy
than required).

* The other strategy was to avoid following irrelevant simulation paths
which do not contribute to our problem-solving goals.

Controlling the Level of Reasoning

NMost devices can be examined at many different levels of detail, from the level
of the entire device to the level of components, subcomponents to the smallest
represented parts. Significant amount of computational time can be saved if it

'it may depend on our additional simulation goals whether outputs should be created
as a result of the functioning of the device.

201

I,

Main-Memory I

IntaieFFT of Mlain-CPU rWalsh of Mlain-CPU I,

FFT f if-pro Walh ofWais-pIo(8)(256)/

Figure 5: Resource use hierarchy for the resource Main-Memory. The topbox
means the entire device, each of the rest of the boxes mean a function of cer-
tain component, and its resource utilization, or resource utilization estimate 1
(in parentheses) with the tolerance (in brackets).

can be decided during problem-solving where it is worth skipping the details. I
Our strategy is that we should go deeper into the component/functional
hierarchy if and only if we can gain valuable information by that concerning I
our particular simulation goal (i.e., related to at least one of the critical
resources, or interesting ports).

In case of resource-use satisfiability, the implementation of this strategy I
consists of two main steps:

"* In one step, a set of resource use hierarchies has been built for each
resource before beginning the simulation process. This set contains
every function that uses the given resource, parent/child functions are
mutually linked to each other. !
An example for a resource use hierarchy can be seen in figure 4.

"* Every time the simulator discovers a new substructure which could beI
explored, it will decide whether it is worth exploring it by analyzing

1

202

-I
I
!

the resource use hierarchies of the critical resources. If it has been
j decided that a short-cut can be taken, i.e., going into more details

would not provide any additional information on any of the interesting
resources, then the estimate transfer function of the current function
will be used (that the simulation can continue).

In case of determining port-values, a short-cut can be taken while travers-
ing a module if no interesting port resides within that module.

Controlling Simulation By Means of Causal Process
Descriptions

In the first run, we applied simulation without the explicit use of cpd's. We
discovered several inefficiencies:

e Let's assume that the device contains two causal processes, A, and B, and
S~B causally depends on A4. Assume that each of them can be executed

by the simulator simultaneously, i.e., there are potential transactions

with the same timestamps in the waiting queue belonging to each of
4 9the paths. The simulator selects one of the transactions randomly to
U execute, therefore, let's assume that the transaction on path B will be

selected, and the same happens also in the subsequent steps. Then,
"at one point, the transaction picked on path B will fail because of the
causal dependency, and the simulator will continue on path A. 7

We could have saved this failing step by ordering transactions accord-
ing to the causal paths they are belonging to. 8

* Another source of inefficiency is if simulation is run on causal paths that
are completely irrelevant of the problem-solving goal, i.e., if some
processes are followed that

7 We had an example of this situation in our prototype: Our prototype consists of
two major causal processes, the first one initialises everything in the device, and the
second one performs the actual functions of the device (sampling, then calculating FFT,

Walsh- transforms or filter the signal, etc.). If we attempt to do sampling before A/D
(that performs sampling) has been initialized, this step will fail. We may waste valuable
computational steps by attempting it more times.

'An ordinary simulator checks on the conditions of all the earliest events in each cycle,
and picks the one with satisfying conditions. Our simulator, on the other hand, intelligently
knows which event to pick without this condition-checking.

2

i20

I

"* do not use the critical resources, and

"* no other processes of the device depend on them which use any of
the critical resources. 9

In order to overcome the above described inefficiencies, we can use FR's
causal process descriptions to control simulation.

The implementation of this strategy requires pre-processing of the rep-
resentation before the problem-solving process can start: cpd's are pairwise
analyzed, whether there is

"* any causal dependency between them

"* either some assumption required by one process is established by
the other one,

"* or some port-value required by one of them has been filled by the
other one.

"* any resource dependency between them (i.e., do they use the same
kind of resource).

The kind of preliminary analysis of FR's causal process descriptions as de-
scribed above is independent of our particular problem-solving goals.

Simulation can be controlled by the cpd's in the following way:

"* As discussed earlier, in every simulation step, the set of earliest transac-
tions is selected (that can happen simultaneously). For every transac-
tion, we determine the particular causal process it belongs to, then

"* each of the cpd's will be checked whether it is relevant to the problem-
solving task, if not, then, it will be removed from the set of active
events,

'An example from our prototype:
It turns out at the rawest estimation-level that MAIN-MEMORY is our critical resource.

In our configuration, filter runs on DSP. From the causal dependency analysis of our
device, it will be clearly seen that the filter process does not influence our decision on !
MAIN-MEMORY-use: it does not use MAIN-MEMORY itself, and no other processes
depend on it that use that resource.

2
1

I
I

* the cpd's of active transactions are checked pairwise for causal depen-
dencies between them, and they will be ordered to be acted upon
accordingly.

One important feature of the above described implementation strategy is
that goal-dependent and goal-independent steps are well-separated:

* The parsing and preliminary analysis of FR (analysis of cpd's) are goal-
independent, the simulation process itself similarly.

@ During the simulation process, some goal-dependent decision-functions
should be called in order to control simulation, to

* order simulation steps, and
* decide possibilities to prune irrelevant simulation paths.

Tradeoffs between Controlling Simulation by
FR and Pure Simulation

7
As we could see in the previous section, controlling simulation by FR costs
plenty of overhead. However, a significant part of additional computation

C can be precalculated, and most of the simulation-time overhead can be econ-
Somized by additional prior computations.

Whether it is worth the extra effort, depends strongly on our goals, and
the kind of device being simulated. The more paths can be weeded out before
performing simulation on it, the more economically our suggested method can
be used.

If we have a few pointed goals, then it is almost sure that using FR
will lead to significant savings. On the other hand, if a vast amount of
information should be collected, we may need to think about some other,
more appropriate way to reduce simulation efforts.

References

[11 Susan Toth Korda, John R. Josephson, Dale Moberg: Represent-
ing Function for Reasoning about Software-Hardware Reconfiguration,
LAIR tech. report, 1992.

2

I 205

I
I
I
I

Representing Function for Reasoning
I about Software-Hardware Reconfiguration

i Susan Toth Korda, John R. Josephson, Dale Moberg

i June 30, 1993

A prototype system for automated generation and testing of software/hardware
configurations can benefit from using device representations that focus on
functions. These capabilities can support designers in analyzing the de-
signed device. For example, our benefit is that some major characteristics,
like resource uses or fault-tolerance can be examined without performing de-
tailed simulation. Based on our ability to generate and test configurations,
we gave an example of how automated reconfiguration can take place which

can support fast reconfiguration in case of component-failures. Another in-
teresting benefit of our problem-solver is that functions can be prioritized so
that if not all functions can be achieved, a degraded mode of operation may
still be possible.

1 Using the Functional Representation Lan-
guage for Automated Reconfiguration

Understanding a device means, in part, understanding how its functions are
achieved by way of the functions and behaviors of its components and their
subcomponents. This kind of knowledge can be used, for example, for diag-
nostic reasoning [I], causal explanation of diagnostic conclusions [2], control

of simulation [5], or debugging of computer programs [3]. In case based de-
sign, the known functions of pre-stored designs can provide indexes to assist

I [with finding the closest pre-stored design case to the desired design [4].

1

I I 206

I -

-4

Systems comprised of software running on hardware can be considered as
devices. The hardware elements and the programs running on them are the
components of the device, and also the information that moves around and
is transformed during processing is special kind of component (we call such
things 'movable substances). Our work is based on extensions to the Func-
tional Representation language (FR), first described by Sembugamoorthy
and Chandrasekaran in [1]. The FR language describes a device as some-
thing which has one or more known functions. The device is made up of
components and the main device achieves its functionality by employing the
services of its components.

FR was originally devised for physical devices, but as [3] has shown,
programs can also be considered as devices. In our domain, a program can
usually run on multiple hardware components, i.e. the same functionality
can be achieved in several ways.

By a particular configuration of the device we mean a specific assign-
ment of software to hardware.

Reconfiguration means reassignment of software to hardware which
may be needed as a consequence of a hardware failure, or in order to achieve
a better utilization of resources.

Estimating the resource use of a particular configuration, and recon-
figuring the device around faults may be major concerns of users. We can
represent the device either independently of the particular configuration, i.e.,
regardless of which software is actually running on which hardware element,
or the representation may reflect the specific association between the software
and the hardware the program is running on.

We supplemented the Functional Representation language with further
primitives whi,:h make it more suitable for reasoning about devices consisting
of software and hardware components and solve the desired problem-solving
tasks. A small prototype has been created (see figure 1), and the enhanced
representation has been used to solve several problems:

* Check the consistency of the configured device:

"* Will the desired functions be achieved by the device ?

"* How much of the resources are used on the average during its func-
tioning ?

20

/ imnl lui207

iI

I

I
I
I

BUS

/ A/D DSP Main CPU

(can run runs APPLICATION

F buffer display TIMER
FFT, program

Walsh, (can run FFT,
filter) filter, Walsh),

SIGNAL OP-SYSTEM

displays FFT,

7 Walsh-transform,

filtered signal
Parameters:

size of the buffer, sampling frequency, and

different resource parameters of the various software and hardware components

Figure 1: Simple signal-processing device consisting of an A/D converter, a

digital signal processor, a display, a main computer, and a timer represented

in the prototype.

2
•. 208

Y --- -

1

I

"* Check all possible alternative configurations, and figure out which of the
desired functions are achieved by each of them, and estimate the re-
source use for each.

"* Try to find all possible configurations if one or more of the components
failed. Assign a priority order to functions and try to achieve high
priority functions first. Determine which functions can be achieved in
this degraded mode (if not all of them are achievable).

2 Extensions to the Functional Representa-
tion Language

The Functional Representation language represents the structure of the
device in terms of components and relations among them; the functions of
the device and its subdevices at several levels of abstraction, and provides a
causal process description (in other words, behaviors of the device) of
how the various functions are achieved by the components/ subcomponents
of the device while assumptions made and generic knowledge used are also
represented explicitly. The device and its components can be in different
states during their operation, and a particular behavior of the device can be
described in terms of a chain of state transitions.

Our particular field of application, (software/ hardware environment) re-
quired several extensions to be made to the existing Functional Representa-
tion language:

e Parameters.

The components of the device may have parameters, the values of which
are determined externally by the user (size of the buffer, sampling fre-
quency, etc.). A variable-name, a default-value, and some description
(text) is assigned to each parameter.

e Resources are assigned also to components, the type, amount and
unit is specified for every resource (example: 128 blocks of RAM).
The amount of the resource may be expressed as a function of the
parameters of the components. j

209 1

I
I

"* Resource uses are attached to behaviors (the amount of certain kind of
resource used during some state transition is specified along with the
particular state transition).

"" OR relationship is used between alternative behaviors which achieve the
same state transition. The alternative branch being followed depends
usually on a configuration-related condition (how the software is as-
signed to hardware). Each alternative behavior may require a different
set of software/ hardware assignments.

e Two specific relations for the software/hardware context, running-on
and can-run-on are attributed special meaning:

* Running-on means that the given software can run on the set of
hardware components, and it is initialized, loaded, started, etc.

* Can-run-on means only the ability of the software to run on the
particular hardware.

The meaning of these two relationships are hard-coded in our current
representation language. It would be nicer in the future to extend our rep-
resentation with new primitives which make it possible for the user to define
his own types of relationships.

3 Discussion

In the followings, we will discuss, how the reconfiguration task (finding al-
- ternative configurations) is supported by representing the functions of the

device, in other words, how strongly FR is used in our problem-solving tasks.
The first task checks the consistency of the function/behavioral descrip-

tion of the device and estimates the average resource use by following causal
paths in the representation. In this task, the FR is used only as an organi-
zation principle to describe the device in terms of functions/ components/
subfunctions, etc.

Estimated resource uses are attached to functions, behaviors, achieving
those functions, or the state-transitions, constituting behaviors, at differ-

q j ent levels of the functional representation. In order to estimate the overall

I
•, 210

amount of resources needed to achieve some function, the FR is used to de-
termine all the lower level functions, behaviors associated with that function,
so that the resource uses belonging to those lower level functions, behaviors,
state-transitions can be accumulated.

Checking the consistency of the FR of the device means crossing the
FR hierarchy associated with each function of the device, and following all the
possible paths, how it is realized. It should be checked whether each behavior
achieving some function is defined in the FR, and really achieves the desired
function, and all the states constituting the corresponding state-transitions
are declared for the appropriate components.

The second task generates all possible alternative configurations
combinatorially, and tries each of them individually. The method of creating
alternative configurations builds fundamentally on the FR. Two configura-
tions are considered as alternatives based on their functionality.

Alternative configurations are generated combinatorially, in all possible
ways. The number may be very large, the system does not have any knowl-
edge to guide generation or to select the best alternatives. Therefore, the
system must be supplemented with further knowledge for this purpose.

The implementation first creates a list of possible assignments (function,
software-component, hardware-components) triples, based on the 'can-run-
on' and 'running-on' relations specified in the RELATIONS section of the
representation.

The set of possible assignments is filtered based on the desirable functions,
using the functional representation: only those possible assignments remain
in the list which contribute to at least one of the functions to be achieved.
It is implemented by crossing the FR hierarchy associated with each desired
function.

Alternative behaviors (which achieve the same state transition in different
ways) are specified by OR relations between behaviors realizing functions or
state-transitions (as mentioned in the previous section as an extension to the
FR language). Alternative behaviors are used to create alternative subsets
of possible assignments (of software to hardware components), each subset
belonging to one of the behaviors (see figure 2). Assignments belonging to a
behavior are parts of the conditional description of the behavior, (i.e. provide
conditions for the validity of the behavior). -r

2

211 -

I
I

I

C - running-on - D or Y - runnAng-_n W or M - running-on - N
kD/ Z - running-on - T

and

D F-running-on- G or (H-running-on - J)

Figure 2. Alternative sets of possible assignments.

Actual configurations are selected in all possible combinations using a
brute-force approach based on the alternative subsets of possible assignments,
one assignment is picked from each set of alternatives, in all possible ways.

The third problem is to design around faults. It is similar to the previ-
ous task, but it generates only those configurations which do not utilize the
faulty component(s). Before creating alternative subsets of possible assign-
ments, all assignments are checked for faulty components, and assignments
containing one or more faulty component(s) are removed from the list.

Desirable functions may be organized in a priority order. The possi-
ble assignments are ordered based on the priority order of functions: The
functional representation of the device is used to decide which possible as-
signments are associated with each of the functions, and possible assignments
related to the highest priority function will be at the beginning of the pos-
sible assignment list, etc. The goal of this ordering is that we want to make
sure that we cannot run out of some resource required for the achievement of
some high priority function in consequence of the resource use of some lower
priority function, i.e. we want to ensure that higher priority functions are

t Iachieved before lower priority functions.

4 Conclusions

We have shown, how we can reason about software/ hardware configuration,
and reconfiguration based on the Functional Representation of the device.

I
LI

1 II

I
S

i
Our program calculated the estimated average resource u .e of the device

during its functioning. Our representation contains only average values, since
the device is described at a very high level, the function level, the processes
underlying the functions are not represented. Therefore, a detailed quan-
titative simulation cannot be completely replaced by using the functional I
representation, but FR may help focus simulation on the most interesting,
and critical possibilities.

References

[1] Sembugamoorthy, V., and Chandrasekaran, B.: Functional representa-
tion of devices and compilation of diagnostic problem solving systems.
1986.

[2] Keuneke, Anne M.: Machine Understanding of Devices. Causal Ex-
planation of Diagnostic Conclusions. PhD thesis 1988.

[3] Allemang, Dean T.: Understanding Programs as Devices. Ph.D. thesis,
1990.

[4] Goel, K. Ashok: Integration of Case-Based Reasoning and Model-
Based Reasoning for Adaptive Design Problem Solving, PhD thesis,
1989.

[5] Sticklen, J.: MDX2, An Integrated Medical Diagnostic System. PhD
thesis, The Ohio State University, 1987.

213 1

I

I Multilevel causal-process modeling.
bridging the plan, execution, and device-implementation gapsI
Keith Levi Dale Moberg

Maharishi International University The Ohio State University
Computer Science Department Laboratory for Artificial Intelligence ResearchI Fairfield, IA 52557 Columbus, OH 43210

Christopher Miller and Fred Rose

Honeywell, Inc.
Systems and Research CenterI Minneapolis, MN 55418

1 1. INTRODUCTION

Knowledge-based systems typically require extensive knowledge about the domain in which they are to operate, in-
cluding knowledge about the objects and systems which exist within the domain, their properties, architectures, capa-
bilities, and interactions. This is particularly the case for systems that require complex reasoning-e.g., systems that
perform explanation, model-based and qualitative reasoning, multilevel and integrated reasoning, design/redesign,

i training and tutoring, and certain systems for knowledge acquisition and machine learning. Acquiring and represent-
ing knowledge at the breadth and depth required for these approaches is especial,:' challenging in complex, real-world
domains such as industrial and aerospace applications. On the other hand, it is commonplace in these domains for
equipment to be well documented, both before and after manufacture, with detailed specifications about its func-
tionality and performance characteristics. It will soon be the case that most of these equipment specifications will
be written and developed as executable software simulations in hardware description languages such as the VHSIC
Hardware Description Language (VHDL).

I VHDL was developed during the early 1980's as a standard, vendor independent description of hardware. With the
growing corri.exity of microelectronics, it was clear that schematic representations would no longer be adequate
for description and subsequent support. VHDL was standardized by the IEEE in 1987, thereby giving the industry
a standard hardware description language. VHDL supports multiple levels of abstraction, but is most useful at
describing the functional or behavioral aspect of hardware. It allows the designer to write a high level description
of a piece of hardware. This description can then be used for simulation, analysis, and by a multitude of other toolsf lthat need to understand the structure and behavior of a specific piece of hardware.

Clearly, it would be of great benefit for knowledge-based systems to obtain some of their prerequisite knowledge
from such sources. As one prominent researcher in the area of explanation based learning speculated: "We foresee a
future in which manufacturers of component equipment themselves provide descriptions, in some standard knowledge-
based formalism, of the functionality of their product just as today they provide technical descriptions in a form
understandable to tequipmentl designers. As the manufacturer makes available refined versions of installed equipment,
the old knowledge-based description of the component is simply supplanted with the new. The kn.•wledge engineer
need only oversee incorporation of the new knowledge insuring that there are no negative interactions that harm
overall system performance." I

j Realizing this vision of the future involves several technical challenges. One challenge is it to bridge the represen-
tational gap between the syntax of hardware design languages and AT systems. We do not see this as- a significant
technical hurdle because several studies have already demonstrated that this can be done. These investigations have

1, 214

used Al reasoning systems to reason about hardware models 2,3,4,5 or have done model-based reasoning using VHDL
6,7

A more significant challenge involves bridging a gap in semantics. By this we mean going from reasoning at a relatively
well-defined and self-contained level of hardware devices to planning and executing actions in the real world involving
uncertainties associated with external agents and incomplete, uncertain, and incorrect information. All the previous
studies we have cited principally reasoned about behaviors and functions of a device and its subcomponents, not
about the function of the device and its subcomponents in the real world. Although one can envision modeling
the whole world as a device in which any given device is a subcomponent, this has generally not been a tractable
approach. It is this gap between modeling plans and their execution in the real world and modeling the internal
behavior of devices in hardware design languages that is the focus of this paper.

1.1 Domain knowledge requirements for real world applications of EBL

Although there are many Al reasoning systems that could benefit from having a detailed source of domain knowledge,
our motivation for pursuing this research has come from an application of machine learning in the domain of pilot
aiding. DARPA and the U.S. Air Force's Pilot's Associate (PA) is a coordinated suite of five expert systems which
cooperate to aid the pilot of an advanced tactical fighter. Intelligent associate systems such as PA 5 support real-time I
planning and decision making in dynamic and evolving situations. An automated associate aids a human pilot in
the performance of a mission by obtaining and compiling information, recommending courses of action and, in some
cases, actively performing certain mission tasks.

PA's problem-solving architecture employs distributed, cooperating modules. Situation Assessment and System
Status subsystems combine various functions involving monitoring the internal aircraft and external ground and
air environments. Mission and Tactics Planners coordinate the planning, scheduling and routing functions. A
Pilot Vehicle Interface subsystem serves to assist in execution functions by delivering information to a human pilot,
making adjustments to information supplied in accordance with his apparent intentions, and monitoring actions
accomplished.

We have been conducting a research program 9,10,11,12,13, titled Learning Systems for Pilot Aiding (LSPA), to
automate portions of the off-line process of incorporating new information into the knowledge bases of PA and
then propagating pertinent changes to various PA modules. An initial study 21,12 recommended Explanation-Based I
Learning (EBL) as having the best payoff for knowledge acquisition in this domain. EBL requires a domain theory of
facts and relationships in the target domain, as well as a learning instance, a new case not previously understood by
the system 4. In LSPA, the learning instance can come from records of actual pilot behavior in a flight simulator.
The domain theory consists of a set of relatively-unchanging facts about the physical capabilities of the aircraft
and the world which it inhabits. When these facts and relationships change, such as when new technologies are
incorporated, the domain theory must be updated. Given an up-to-date domain theory, however, novel tactics can
be learned automatically from a record of the flight in which they occurred. The system builds an explanation of i
how a known goal was accomplished via its understanding of the world. This explanation can then be generalized to
produce a new plan to be incorporated into PA.

A critical issue for any application of explanation-based learning is the scope and nature of the domain theory
required for generating explanations. Our domain theory rules presently cover much of a relatively self-contained
portion of the PA domain, the domain for defeating surface-to-air missiles. This is, however, only a small portion
of the domain that the PA system deals with. While our domain theory is successful as a feasibility demonstration, 1
the issue of whether we can scale-up our system to cover the entire PA domain remains an important open question.

If the required domain theory for EBL is sufficiently large then it might be more work to build this domain theory than 1
it would be to simply build all of the tactical plans directly. We believe, however, that this will not be the case. An
EBL domain theory is essentially a model of the primitive functionality of the aircraft and its environment. Tactical
plans, in contrast, model all known behaviors arising from the functionality of the aircraft and its environment. This

is analogous to a set of axioms and the set of all possible theorems that can be derived from the axioms. The former

215 1

!

is typically a finite set and the latter is typically infinite.

Thus, the strategy of the LSPA system is that if we can create a domain theory (i.e., set of axioms) we can then

automate important parts of the knowledge engineering process for creating a PA. The issue that we are now

addressing is whether we can successfully scale-up our domain theory about the pilot-aiding domain.

A full domain theory should be integrated across the different PA expert systems. This will require different perspec-

tives of common events, equipment, and actions for the different modules 9. Another important requirement, which

is the main focus of this paper, is that this integrated domain theory should also be connected to the aircraft systems.

The domain theory will necessarily be heavily based on assumptions about the aircraft and its subsystems. Aircraft

are frequently retrofitted with new equipment and capabilities. Explicitly modeling functionality dependencies of

the aircraft will be necessary for the domain theory to be easily updated as the aircraft evolves.

1.2 Outline of paper

In the remainder of this paper we will report on preliminary work investigating whether an Al high-level mission

performance model can usefully connect to and share information with a low-level VHDL model of hardware compo-

nents. A novel aspect of this work is the degree of separation of the mission performance functions from the isolated

behavior of the hardware components. Other researchers have investigated diagnostic reasoning using VHDL models.

There is a significant gap, however, between the level of reasoning that is done in such diagnostic settings and our

mission performance setting. The functionality of the diagnostic context is typically closely connected to the internal

behavior of the given device. In our domain we are reasoning about functionality of hardware within a much broader

context. Any given piece of hardware might be involved in many different mission functions. Representing these

connections between the mission functions and the hardware functions is a significant challenge in itself because there
are so many layers and interconnections.

We expect that representing these connections should have significant benefits in two directions. First, there should
be top-down benefits that go from the mission performance model to the device model. An appropriate representation
should enable us to develop reasoning procedures that can derive hardware specifications from the mission perfor-
mance model. Similar reasoning procedures could verify that a given hardware design can actually fulfill mission

performance requirements, or at least systematically generate VHDL simulation testbenches based on the high-level
mission performance model. A second direction for benefits will be bottom-up from VHDL models of hardware com-
ponents to the mission performance model. These benefits will include instantiating constraints on the performance
model from VHDL models of the hardware.

In the rest of this paper we will present preliminary work in these three areas. We will first present an example
of a representation that is well-suited to capturing the multiple layers and interconnections involved in relating a
high-level mission performance model to low-level VHDL device models. We will then present examples of top-down
and bottom-up connections between our high-level mission performance model and a VHDL model of a graphics
processor for cockpit displays.

2. FUNCTIONAL REPRESENTATION AS AN INTEGRIATIVE GLUE

Much of our thinking about ordinary devices and how they work involves viewing those objects as contributing to
various causal processes that make the device realise its functions. Causation has been called "the cement of the
universe," and few would contest the centrality of causal relations, and the role they play in decomposing systems
into subsystems, components, subfunctions and constituent causal processes.

One organization of our causal knowledge of a system, especially a complex system such as a pilot flying an aircraft, is

from overall functionality down to the subsystems with their subcomponents and their contributing functionalities.
A functional decomposition of aircraft Rights is primarily of value to show how to move from higher levels of
functional description to lower levels of causal processes that realize functions of interest. A decomposition in which
the functional parts are both represented and related then provides the "integrative glue" for subsequent problem

216

1

Device: Ownship

Function: Safe-from-Ground-Based-Missile(PopupSamSite)

If. (Noticed PopupSamSite Obstacle to CurrentRoute)

Prevent: (SamSite launch at ownship)

Until: (Past PopupSamSite)

Provided: (And
(No authorization to destroy encountered PopupSamSites)
(No directive to destroy encountered PopupSamSites))

By: (XOr
Prevent-Track-PopupSamSiteI
Break-Track-PopupSarnSite

Prevent-Fire-Control-Solution)

Decomposition: If radar in search mode do chaff, electronic warfare and/or cloaking.
If in track break track.
If in fire-control break fire-control and (concurrently) break-track

Figure 1: The Safe-from-Ground-Based-Missile(PopupSamSite) of Ownship

solving across the levels. If we want to know how an equipment change, for example, might effect parameters
governing a maneuver for accomplishing some flight goal, the dependencies marked in a functional decomposition
can show us what to look for, and how to figure out what has changed.

Functional Representation20 ,2 was developed as a representational scheme for the causal processes that culmi-
nate in the achievement of device functions. Functional Representation (FR) explains how a device function is

achieved. The function of the overall device is described first and the behavior of each component is described I
in terms of how it contributes to the function. FR has been used for diagnosis, design, redesign, explanation and
prediction2 ,15 ,"6 ,17 ,,'1 •",20 ,21 22 . Previous investigations have also considered some aspects of how FR can assist in
machine learning, knowledge acquisition and knowledge compilation23 ,24,25 .

Functions and causal processes are closely related to goals and plans for achieving the goals. This suggests that FR
should be a natural represention for pilot-aiding domain theory. Since FR was originally developed for representing
hardware devices, it also should be a natural representation for connecting to the device level of an aircraft, i.e., in
this case VHDL models. The remainder of this section presents a preliminary set of functions and causal process
descriptions (CPDs) that model one of the scenarios from the LSPA program. The purpose of this model is to give
a sense of the representation that will be required.

The goal of the scenario we will consider is to be safe from a surface-to-air missile threat. This goal, or desired result,
is a high-level function (of a tacit aircraft-mission device). We will model the plans associated with this function as
causal processes to achieve or maintain this result. I
In the pilot-aiding domain, it is quite common for several plans to be available for a given goal-even a quite specifically
delineated goal. This feature means that to model the goal-to-plan relation functionally, the usual FR formalism
needs to be augmented. The addition of Or, Xor, Concurrently operators is one addition required for devices 1
having a situation dependent reconfigurability (most obviously in those devices that are at least partially controlled
by agents). When such constructs are used, it is useful to have specific Decomposition Rules to indicate what CPD]
should be used when. We will illustrate this augmentation to FR with the function described in Figure 1.

Figure I provides a function frame for a specific goal of being safe from ground-to-air missile threats. A "Popup-
SamSite" is a previously unknown ground-based missile site. No mission planning or routing information would have
indicated its existence, and its presence is then an unanticipated hazard of some mission. We are presuming that the

1
2174

t

PopupSamSite(x) on route in track-mode exists.D

By sensors, processors and displaygenerators

Noticed PopUpSamSite in Track-mode (pilot)

Using Function Break-Track of OwnShip

NoTrackMode

Figure 2: CPD: Break-Track-PopupSamSite

semantics of Safety goals are linked to mainly defensive measures; the functionality of being a defensive safety goal
is indicated in the Provided field that suggests that no preemptive destructive goals are appropriate or warranted.
In general, the Provided fields are used to indicate the Standard Operating Conditions under which the current
CPDs are assumed to work. The semantics of these fields are especially important for deciding that a malfunction
exists. This is because the truth of Provided fields are presuppositions for raising the question of whether and how
a malfunction has occurred.

The resultant state that "defines" the Safe-from-Ground-Based-Missile(PopupSamSite) of Ownship Function is that
a launch of the PopupSamSite is prevented. Preventing a launch is essentially a matter of denying the Sam-Site a
means of obtaining a state that enables a launch. In this illustration, the focus is on those causal processes that
block a launch-capable state by denying appropriate radar information.

There is no unique causal process that invariably is appropriate for preventing the PopupSamSite launch. The
prevention functionality is an abstraction over a potential range of causal processes, any of which can prevent launch.
Unlike simple devices where a given function depends on some fixed causal process for its realization, a device
involving an agent operating in an uncertain environment typically needs to be represented as having a capability
to exercise a range of optional processes. In the current illustration, for example, different actions are appropriate
depending on the state of the radar of the PopupSamSite. We will imagine that radars are, if working, in one of three
mutually exclusive modes with respect to us: search, track, or fire-control-solution mode. The primary differences
concern the degree to which information has permitted the radar installation to notice and predict ownship's (our
aircraft's) path. Thus different actions will be appropriate for different modes. For example, if the radar is in search
mode, we desire it to remain so and only engage in measures that will impede the radar obtaining a track.

In this illustration, we will not pursue a breadth first expansion of all possible CPD expansions, but will instead
imagine a traversal of our model that proceeds to greater and greater levels of detail. We next consider the CPD
of Break-Track-PopupSamSite, which provides one way to prevent the PopupSamSite launch, and thus achieve the
safety goal.

In Figure 2, we present the next layer of decomposition in a CPD for Break-Track-PopupSamSite. The initial causal
state in this process is that there is a PopupSamSite that is in track mode. Then by a (quite complex) causal process
that we will not expand here, sensors detect signals that are processed and made available to display generators that
illuminate surfaces for the agent to sample. This sampling process by a pilot normally results in the pilot noticing

218

Device: Ownship
Function: Break-Track
If: (PopupSsmSite(Locationldentifier) in track mode)
Makes: (PopupSamSite(Locationldentifier) in search mode)
By: (Or Constant-Distance-Behavior ElectronicMeasures)
Decomposition: If Type(PopupSamSite 1) then Constant-Distance-Behavior.

Figure 3: Break Track Function

NOA not equal to 90 degrees

Using sensor-signalprocessor-displaygenerator functions of Ownship

Pilot Notices NOA not equal to 90 degrees

Using Function Make-NOA-Equal-90 of OwnShip

NOA equal to 90 degrees

Using Function Maintain-NOA-Equal-90 of Ownship

SamSite in search mode

I
Figure 4: CPD: Constant-Distance-Behavior(fixedground)

that the PopupSamSite is in track mode. This awareness of the pilot then leads to the pilot's using a function,
Break-Track, to cause the result state of the PopupSamSite losing track mode.

One virtue of the FR and CPD modeling approach is that we are able to skip over some processes for which we do
not have models at a complete level of detail. We do not know the precise retinal and cortical events leading to
pilot registration of a situation, for example. Of course, we may know some behavioral parameters for this process !
(such as average response time). Within the FR and CPD approach, such variables of interest, and equations for
computing them when known, are normally attached to the links and state nodes that are marked by the relevant
qualitative states and transitions.

In Figure 3, we provide a function frame for the Break-Track function that we have just mentioned. To aid in
seeing how a functional decomposition is produced, it is useful at this point to further describe our domain. The
specific leaf plan of a possible PA plan-goal graph that we are capturing involves a safety plan, called a doppler
notch maneuver, that works in the following way. We suppose there is a particular ground based missile and radar
configuration that employs a doppler radar that can be "tricked" by flying in a circle around the site and maintaining 1
constant distance from the radar installation. We now wish to translate this maneuver into the underlying causal !
processes that carry it out. We next expand our representation preferentially to consider the decomposition of the
Constant-Distance-Behavior CPD indexed in the By slot of Figure 3.

Figure 4 shows the expansion of the pilot behavior that goes into the doppler notch maneuver. To achieve a constant I
distance effect, the pilot thinks of flying in an arc that maintains the radar base at an angle of ninety degrees off

219 Jf

Device: Ownship
Function: Maintain-NOA-Equal-90
If: (NOA within 90 +/- 7.5 degrees)
Maintains: (NOA within 90 +/- 7.5 degrees)
By: (PrecisionFixed)
Decomposition knowledge comments:

Figure 5: Function Maintain-NOA-Equal-90(PopupSamSite) of Ownship

f Direction, Knit-point, How-much, Term-point

BY Monitor for initiation point

Pilot Notices Init-point reached

BY Precision stick movement

Turn in progress

BY Monitor for ease-off point

Notice reach ease-off point

BY Precision stick movement

Notice reach termination point

Figure 6: CPD: Precision- Fixed-Maneuver

the line through the plane's nose through its tail. We refer to this orientation mode as NOA, for nose-off-angle. The
maneuver is decomposable into a state of being in a NOA unequal to ninety degrees leading to a state of noticing
that fact, followed by making and then maintaining the NOA equal to ninety degrees.

Figure 5 represents the function frame for the function Maintain-NOA-Equal-90. The If slot states that this function
is only appropriate when ownship is already close to a NOA of 90 degrees (e.g., +/- 7.5 degrees). The By slot states
that this function is accomplished by a class of maneuver that we call a PrecisionFixed maneuver. Such a maneuver
is typically a very deliberate and patiently executed maneuver with a concern for steady and exacting tolerances.

Figure 6 further decomposes the PrecisionFixed type of maneuver. Such a maneuver starts out in a state of knowing
information such as the direction of the maneuver, the points at which to initiate and terminate the maneuver, and
how much or how strong of a turn the maneuver will involve. The pilot then must monitor for the intitiation point
and start the maneuver upon reaching that point. The pilot initiates and then maintains the maneuver by making
precise movements of the stick until he nears the termination point, at which time he eases out of the turn by another
precision stick movement.

Figure 7 describes the function of making a precision stick movement. This function requires tiat the stick must
initially be close to the desired position. It also requires that the pilot has perceptual feedback at a sufficiently
fine-grained and accurate level to permit the precision maneuver. For example, if NOA were only displayed in 10

220

Device: Stick
Function: Precision-stick-movement
If: close to desired "direction"
Makes: equal to desired "direction"
Provided: accuracy of instrumentation within range of "close"
By: small gradual movement of stick guided by pilot's perceptual-motor skills
Decomposition knowledge comments:

Figure 7: Function Precision Stick Movement Function

degree increments then it will be difficult for the pilot to make the turn within a tolerance of a few degrees. Similarly,
the same problem will arise if the NOA information is only accurate to within 10 degrees.

We have now reached a level where we can begin to connect our mission performance model to hardware components
and VHDL models of those hardware components. For example, this function could easily include pointers to
hardware components that provide information on NOA. In this case such information would probably come from
a radar warning reciever. We could use this connection in two general ways. One use would be to specify the
accuracy required in NOA readings by this maneuver. This would be deriving a hardware specification from the
high level mission-performance model. A second type of use is an inverse of the first. This would be to constrain the
performance model by available accuracy limits of different instruments-such as the radar warning reciever in this
case.

3. BOTTOM-UP EXAMPLE OF BRIDGING MISSION PERFORMANCE
AND DEVICE IMPLEMENTATION LEVELS

The LSPA program was divided into two parts: the Learning System for Tactical Plans (LSTP) which used machine
learning techniques to acquire a new plan by observing a pilot-flown example, and the Learning System for Information
Requirements (LSIR) which took the newly-learned plan as input and generated a set of information elements a
pilot would require in order to perform the plan. The Pilot-Vehicle Interface module of the PA uses the lists of
information elements generated by LSIR to dynamically select a set of display formats for presentation in the cockpit
based on the set of active plans. LSIR uses several paramters to describe and reason about each information element.
Two examples are responaiveness and task rate-of-ch4nge. The responsiveness parameter indicates how quickly an
information element changes value in response to a query or command for a change. Task rate-of-change refers to
how often the values of a given information element tend to change.

Even though the parameters of LSIR information elements are at a very detailed grain sise relative to tactical plans,
they involve information at a quite large grain size relative to most existing VHDL models. One of the authors,
however, has been a principal designer and implementor of a model using VHDL for systems performance and
architectural evaluation of the next-generation cockpit display generator. This VHDL model, known as the Cockpit
Display Generator (CDG), was sponsored by the Wright Laboratories Cockpit Technology Directorate. It is being
driven primarily by the development of next-generation rotary wing, transport and fighter aircraft.

CDG is the only existing VHDL model we know that comes close to describing avionics devices at an appropriate
level for these LSIR parameters. Because of the availability of CDG, we have focused our analyses on information
parameter values that are entirely controlled by the graphics processor-primarily those which are aspects of the '
displays themselves. One such information element is the range setting of the Tactical Situation Display (e.g., 5, 10,
20, 40, or 60 nautical miles). The responsiveness and task rate-of-change parameters for the Tactical Situation Display

range setting are only affected by the performance of the graphics processor and the display surfaces themselves.

Knowledge about latency and throughput values for information requirements that are localized in the graphics
processor are readily available via simulation of the CDG models. Latency values can be directly used for the LSIR -
responsiveness parameter. The task rate-of-change parameter can easily be calculated from the VHDL throughput
values. Although these two parameters are a limited portion of the total number of parameters that LSIR requires,

1

221 1

I

our analyses indicate that we should be able to obtain a substantial proportion of the total number of parameters
once more detailed VHDL models become available. We expect that VHDL models of system level devices will
become relatively common over the next 10 to 15 years 2

6.

A major limitation of the present CDG model is that it is a VHDL performance model. That is, it only models
processing times. This is in contrast to VHDL functional models which will represent and reason about the values that

I are produced in addition to simply modeling how fast inputs are processed. However, even with pure performance
models, latency and throughput values can be derived for information requirements not exclusively associated with
the graphics processor. This can be accomplished by "stringing" VHDL models together. For example, the latency
associated with a commanded change to the mode of the aircraft's FLIR will be the sum of the latencies from the
pilot's button press, through the mission computer, to the FLIR itself, then from the FLIR to the mission computer
to the graphics processor to the display. The throughput for value changes will be the limiting throughput along the
same path.

4. TOP-DOWN EXAMPLE OF BRIDGING MISSION PERFORMANCE
AND DEVICE IMPLEMENTATION LEVELS

The integrated representation we presented in section 2 was helpful in organizing our thinking about plans, infor-
mation elements, and their connection to the VHDL device models. This representation, however, is not strictly
necessary for implementing the bottom-up use of the CDG model we described for providing parameters on LSIR
information elements. In this section we describe another possible connection between the mission performance
systems and device level descriptions in VHDL. We refer to this as a top-down connection because we propose to
use the high level mission performance model to derive parameters for use in the VHDL model. In particular, we
suggest an approach to generating testbenches for VHDL simulations.

Note that the VHDL simulations we described above need to be sensitive to the relevant plans with which the
information elements are associated. For example, task rate-of-change of a velocity display (how often the values of
the display change) will be very different for maneuvers that involve fast accelerations versus maneuvers that only
involve cruising at constant velocities. Such plan dependencies require that the simulation include the relative load
levels on the graphics processor imposed by other activities which are known to be ongoing during the plan. For
example, during a Doppler Notch maneuver, high-g turns mean that the digital map equipment on the aircraft will
be required to go through a large amount of terrain data and be updated frequently. This implies a relatively high
load on the graphics processor compared to most other plans.

A simulation of the graphics processor load might be determined in accordance with the following scheme for au-
tomatic generation of a testbench of the graphics processor avionics subsystem. First, instantiate a high level plan
for a given situation. This could easily be done by using flight simulators such as were used on the PA and LSPA
programs. For each plan that is operative in the generated situation, (and perhaps a background load that is typical
for the system) a list of display-relevant events must be generated. Rules for inferring such an event list already exist
as part of the LSIR system. New rules must be added that will translate these event lists into data flow estimates
for the VHDL model. These estimates will provide the initial conditions for the simulation run of the VHDL model.

The Functional Representation framework would be used to to control the computation and temporal ordering of
the data flow estimates. The idea is to attach methods to the Functional Representation that compute data flow
estimates. These computations will depend on their location in the representation and instantiations of variables for
activated plans. A traversal of the representation that respects the causal transition order should produce the proper
temporal ordering on the data flow specifications.

5. CONCLUSIONS AND FUTURE WORK

We have reported preliminary work investigating whether an Al high-level mission performance model can usefully

connect to and share information with a low-level VHDL model of hardware components. To date, our work has

2
S~222

V -

mainly been an analysis of the problem based on two AI high-level mission performance models, the Pilot's Associate
and Learning Systems for Pilot Aiding systems, and a system level VHDL model of a graphics display processor,
the CDG model. In this paper we have sketched an example of a connection between such systems using Functional
Representation. We have also described an example in which information for the mission performance model is
obtained from a VHDL device model and another example in which testbench parameters for the VHDL model can
be generated from the mission performance model.

These examples are all in early stages of development. The examples of reasoning between the two types of systems
presently only make allusions to using the Functional Representation that we described. The value of this integrated
representation has so far primarily been in organising our conceptualisation of the problem domain. We believe,
however, that the only notion broad enough to encompass all connections of hardware, software, human behavior
and external world environment at the mission performance level is that of functionality. Thus, we anticipate
that such a representation will become increasingly crucial to usefully bridging the mission performance and device
implementation levels as this work proceeds.

In this paper we have defined our problem and approach and have sketched a representation for a small example.
We have also given two examples of potential uses of this representation. Our next steps will include implementing
examples of these top-down and bottom-up uses. Our future plans also include scaling-up our representations to
handle more scenarios and the different perspectives that will be required by the different modules such as situation
assessment and system status.

6. ACKNOWLEDGMENTS

This paper is based on work performed for the Learning Systems Pilot Aiding contract from the Wright Laboratory
(Contract Number F33615-88-C-1739). We are pleased to acknowledge inputs from Todd Carpenter, Gurdial Saini,
Jerry Covert, Christine Reynolds, and Jerry Meyers. Dale Moberg gratefully acknowledges partial support under
DARPA-AFOSR Contract F49620-89-C-0110, Design and Diagnosis Problem Solving with Multifunctional Technical
Knowledge Bases.

7. REFERENCES

References
[I] G DeJong Personal communication, March, 1992.

[2] Y. Iwasaki and B. Chandrasekaran. Design verification through function- and behavior-oriented representations:
Bridging the gap between function and behavior. To appear in Proc. Intern. Conf AI in Engineering, Pittsburgh,
PA., 1992.

[31 Korda, S.T., Josephson, J.R., Moberg, D. "Combining functional representation and structure-based models for
smarter simulation." LAIR Technical Report, 1992.

(4] Larson, R.A. "An architecture for explicit representation of cause and function in discrete event simulation
modeling," M.S. Thesis, University of Minnesota, 1992. I

[5) Tom Mitchell, Sridhar Mahadevan, Louis Steinberg "LEAP: A Learning Apprentice for VLSI Design" Proceed-
ings of the 9th International Joint Conference on Al LA,CA August 18-23, 1985 vol. 1 pp 573-580

[6] R. A. Marcotte, M.J. Neiberg, R. L. Piassa and L. J. Holtsblatt. "Model-Based Diagnostic Reasoning Using
VHDL" In Performance and Fauli Modeling woith VHDL, J. M. Schoen (ed.), Prentice Hall 1991.

(7] Richard H. Lathrop, Robert J. Hall Robert S. Kirk "Functional Abstraction from Structure in VLSI Simulation
Models" Proceedings of the 24th Design Automation Conference 1987, pp 250-256

223-S. 'S

T

[8] S.B. Banks & C.S. Lisza "Pilot's Associate: A Cooperative, Knowledge-Based System Application," IEEE
Expert, Vol. 6, No. 3, June 1991, pp. 18 - 29.

[9] Levi, K.R., & Miller, C. "Automated Acquisition of Plans and Information Requirements in an Intelligent Agent
Architecture," Ninth International Machine Learning Conference, Workshop on Architectures for Suporting
Machine Learning and Knowledge Acquisition, Aberdeen, Scotland, July, 1992.

* [10] K. Levi, D.P. Perschbacher, M. Hoffman, C.A. Miller, V.L. Shalin, B.B. Druhan An Explanation-Based Learning
Approach to Knowledge Compilation: Application to Pilot's Associate IEEE Ezpert, Vol. 7, No. 3, June 1992,
pp. 44- 51.

j [11] K.R. Levi, V.L. Shalin, E.D. Wisniewski, & P. Scott, "An Analysis of Machine Learning Applications for
Pilot-Aiding Expert Systems," Final report for contract no. F33615-86-C-1125. AFWAL Technical Report
TR-87-1147, 1987.

f [12] K.R. Levi, V.L. Shalin, & D.L. Perschbacher, "Automating Acquisition of Plans for an Intelligent Assistant by
Observing User Behavior," International Journal of Man-Machine Studies, Vol. 33, 1990, 489 - 503.

[13] Shalin, V.L., Wisniewski, E.D., Levi, K.R., & Scott, P.D. A formal analysis of machine learning for knowledge
acquisition International Journal of Man-Machine Studies, 29, 1988, 429-446.

[14] G. DeJong & R. Mooney "Explanation-based Learning: An Alternative View," Machine Learning Vol. 1, 1986,
pp. 145 - 176.

[15] D. Allemang. Understanding Programs as Devices. PhD thesis, Ohio State University, 1990.

(161 B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine, 11(4):59-71, 1990.

[17] A. Goal and B. Chandrasekaran. Functional representation of designs and redesign problem solving. In Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence, 1388-1394, August 1989.

[18] A.M. Keuneke. Device representation: the significance of functional knowledge. IEEE Expert, April:22-25, 1991.

[19] M. Pegah, W. E. Bond, and J. Sticklen. Representing and Reasoning about the Fuel System of the McDonnell
Douglas F/A-18 from a Functional Perspective. IEEE Ezpert, To appear.

[20] V. Sembugamoorthy and B. Chandrasekaran. Functional representation of devices and compilation of diagnostic
problem-solving systems. In J. Kolodner and C. Reisbeck, editors, Ezperience, Memory, and Reasoning, pages
47-73. Lawrence Erlbaum Associates, 1986.

[21] J. Sticklen, W. E. Bond, and D. C. St. Clair. Introducing functional reasoning into the aerospace domain. In
Proceedings of the 4th Conference on AI Applications for Space, NASA.

(22] J. Sticklen, A. Kamel, and W. E. Bond. A model-based appproach for organizing quantitative computations. In
Second Annual Conference on AI Simulation and Planning in High Autonomy Systems, Orlando, FL, (1991).

[23] B. Chandrasekaran Models vs Rules, Deep vs Compiled, Content vs Form: Some Distinctions in Knowledge
Systems Research IEEE Ezpert, 1991

[24] Dale Moberg and John Josephson. Diagnosing and fixing faults in theories: Appendix: An implementation note.
In Computational Models of Discovery and Theory Formation, 1990.

[25] Mike Weintraub. An Explanation-Based Approach to Assigning Credit. Dissertation, Advisor: Tom Bylander,
The Ohio State University, 1991.

[26] Rose, F. and Carpenter, T. VHDL's Role in Knowledge Acquisition. Proceedings of the Eleventh Applications
of Artificial Intelligence Conference, AAI-XI: Knowledge-Based Systems in Aerospace and Industry.

224

